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Abstract—Traditionally, Quality of Experience (QoE) assess-
ment results (or objective estimations thereof) are presented as a
single scalar value, typically a Mean Opinion Score (MOS). While
useful, the limitations of MOS are evident even in its name; for
many applications, just having a mean value is simply not enough.
For service providers in particular, it would be more interesting
to have an idea of how the scores are distributed, so as to ensure
that a certain portion of the user population is experiencing
satisfactory levels of quality, thus reducing churn. In this paper
we propose different statistical measures to express important
aspects of QoE beyond MOS like user diversity, uncertainty of
user rating distributions, ratio of dissatisfied users. Further, we
propose a way to use MOS values and the standard deviation
of opinion scores (SOS) hypothesis, which postulates a quadratic
relation between subjective scores and their standard deviation,
in order to derive quantiles for subjective ratings.

I. INTRODUCTION

It is a common and well-established practice to use Mean
Opinion Scores (MOS) [1] to quantify perceived quality, both
in the research literature, as well as in practical applications
such as QoE models. This is simple and useful for “technical”
evaluation of systems and applications such as network dimen-
siong, performance evaluation of new networking mechansims,
assessment of new codecs, etc.

From a service provider’s point of view, however, MOS
values are not sufficient. Averages only consider — well —
averages, and do not provide a way to address variations
between users. As an extreme example, if the MOS of a given
service under a given condition is 3, it is impossible to know
whether all users perceived quality as acceptable (all scores
are 3), or maybe half the users rated the quality 5 while the
other half rated it 1, or anything in between, in principle. To
some extent, this can be mitigated by quantifying user rating
variation via e.g. standard deviations. However, the question
often faced by service providers is of the type: “Assuming they
observe comparable conditions, are at least 95% of my users
satisfied with the service quality they receive?”. Our goal in
this paper is to provide a way to answer such questions.

Our main contribution is highlighting the importance of
insight in the uncertainty of the opinion scores. The uncer-
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tainty is hidden by the MOS, and such an insight will enable
the service providers to manage the QoE in a much better
way. The paper shows different approaches to quantify the
uncertainty; standard deviation, entropy, cumulative density
function (CDF), and quantiles. An example with a fitting of
data to a binomial distribution, and another example where the
uncertainty is estimated directly from the data, are presented.

The remainder of this paper is structured as follows.
Section II discusses related work. Section III describes our
approach, while Section IV-A presents the results of applying
it to two subjective assessment dataset, hightlighting the poten-
tial and limitations of the approach. We conclude the paper in
Section V, discussing the practical implications of our results.

II. BACKGROUND AND RELATED WORK

A. User Diversity and Assessment Methodologies

In the context of traditional multimedia quality assessment,
there exist several methodologies that have been developed
and standardized [2]–[4] in order to obtain quality ratings for
different types of media and applications. These methodolo-
gies have been designed with consistency and reproducibility
in mind, which allow results to be comparable across studies
done in similar conditions. For the most part, these methodolo-
gies result in MOS ratings, along with standard deviation and
confidence intervals, which is in line with recommendations
in the statistics literature, e.g. [5].

The use of averaging, however, can hide information about
the way different users rate the quality that is useful in many
contexts. Such limitations of MOS are recently discussed [6],
[7]; assessment results should contain more details on the vari-
ation of opinions among users [8] . There are many potential
reasons for these variations, first and foremost the fact that
users are simply different people, with different expectations,
service usage history, etc. Even though these factors can
be, to some degree, controlled in a lab environment, in real
applications, these different opinions can have a significant
meaning in terms of business (e.g., service provider reputation
and branding image, customer acquisition, churn).

In [6], the authors proposed a compact way of capturing
some of the user variation in the assessments by means of
combining the MOS with the standard deviation of opinion



scores, which provides a first step towards improving the
traditional approaches.

B. Service Provider’s Interest in Quantiles

In order to stay in business in a free market, ISPs and other
service providers need to maintain a large portion of their users
satisfied, lest they stop using the service or change providers
— the dreaded “churn” problem. For any given service level
the provider can furnish, there will be a certain proportion
of users who might find it unacceptable, and the perceived
quality of the service is one of the key factors determining
user churn [9]. Moreover, a large majority (∼ 90%) of users
will simply defect a service provider without even complaining
to them about service quality, and report their bad experience
within their social circles [10], resulting in a possibly even
larger business impact in terms of e.g., brand reputation. With
only a mean value as an indicator for QoE, such as the
MOS, the service provider cannot know what this number
of unsatisfied users might be, as user variation is lost in the
averaging process.

For many applications, however, it is desirable to gauge the
portion of users that is satisfied given a set of conditions (e.g.,
under peak-time traffic, for an IPTV service). For example, a
service provider might want to ensure that at least, say, 95%
of its users find the service acceptable or better. In order to
ascertain this, some knowledge of how the user ratings are
distributed for any given condition is needed. In particular,
calculating the 95% quantile (keeping in line with the example
above) would be sufficient for the provider.

III. THEORY: DISTRIBUTION OF OPINION SCORES

For the sake of simplicity, but without loss of generality, we
consider a discrete rating scale with values from 0, 1, . . . , N .
In the QoE domain, the most commonly used scale for quality
ratings is a discrete 5-point scale with the categories 1,’bad’,
2,’poor’, 3,’fair’, 4,’good’, and 5,’excellent’ referred to as
Absolute Category Rating (ACR) [11]. In the numerical results
in Section IV-A and Section IV-B, we analyze subjective
results based on this 5-point ACR scale and shift the ratings
accordingly to 0, 1, 2, 3, 4 with N = 4.

In what follows, we briefly introduce the notation used in
the paper, and summarized in Table I. We consider a subjective
test with r participants for a particular test condition. Thus,
we obtain r ratings on the ACR scale. U is the random
variable that represents the opinion score, U ∈ {0, . . . , 4}. The
probability mass function, pu = P (U = u), is the probability
that the opinion score is u. An unbiased estimate of pu is the
ratio of users that are rating the test condition with u. With
the rating of user i being Ui, we obtain p̂u = 1

r

∑r
i=1 δUi,u

with the Kronecker delta δi,j = 1 if i = j and 0 otherwise.
The MOS score is x =

∑N
u=0 u · p̂u, and the expected score

value is E [U ] =
∑N
u=0 u · pu. A dissatisfied user is defined

as a user that has a score value below a certain threshold
value θ. The probability of a dissatisfied user is then Pθ =
P (U ≤ θ) =

∑bθc
i=0 pu. The probability of a dissatisfied user

is estimated by P̂θ =
∑bθc
u=0 p̂u.

TABLE I: Variables and notations frequently used in the paper.

notation meaning

N upper number on the discrete rating scale {0, . . . , N}
U random variable describing the user ratings for a particular

test condition, U ∈ {0, . . . , N}
r number of user ratings per test condition
Ui rating of user i for a particular test condition
pu probability that the user rating is u ∈ {0, . . . , N}
p̂u estimate of pu, i.e. ratio of users who rate the test condition

with u
x MOS value for a test condition
θ acceptance threshold, 0 ≤ θ ≤ N , used in the definition of

dissatisfied users, i.e. Ui < θ
Pθ probability of an dissatisfied user with threshold θ,
P̂θ estimate of the probability Pθ of an dissatisfied user,
V (x) variance of user ratings as a function of MOS scores x
a SOS parameter of SOS hypothesis in Eq. 2
∆Qα difference between the MOS value and the α-quantile
∆Θθ difference between the MOS value and the threshold θ

A. SOS Hypothesis Revisited

On a discrete rating scale, there is a maximum standard
deviation score S∗(x) related to a certain MOS value x which
is the result of diverse ratings of the same test condition from
r different users. The following equation holds for any MOS
value x ∈ [0;N ], cf. [6].

S∗(x) =
√
−x2 +N · x (1)

The SOS hypothesis formulates a generic relationship be-
tween MOS and SOS values independent of the type of service
or application under consideration. Thereby, the SOS parame-
ter a is a specific value for a certain application or service (and
the test conditions/impairments under consideration) which is
derived from subjective tests. For a given MOS value x on a
discrete rating scale from 0 to N , the standard deviation is

S(x) =
√
a(−x2 +N · x) . (2)

B. Entropy

The entropy is defined as [12]

E = −
N∑
u=0

pu log pu . (3)

The entropy expresses the uncertainty in the information
provided by the measurement system. In a perfect score
system, where all factors of the users and the state of the
system are known, the entropy is 0 because the score will be
deterministic. When nothing is known, and all score values
have the same probability, the entropy is at its maximum. The
uncertainty of the measurement system should in principle
be the same over the whole range of values, x, but due to
the discrete and truncated scale that is used, the effect of the
uncertainty is less evident close to the maximum and minimum
values.



C. User Ratings following a Binomial Distribution

Now we consider the cases that user ratings U follow
a binomial distribution for a particular test condition. As
reported in [6], (and in the case study in Section IV-A), the
measurements Ũ can be described by a binomial distributed
random variable U ∼ BINO(N, p). Thereby, the user ratings
can take values 0, 1, · · · , N , while the parameter p is computed
based on the observed MOS value x as measured for that test
condition.

The expected value of U ∼ BINO(N, p) is

E [U ] = N · p = x . (4)
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Fig. 1: Relationship between MOS and SOS values. The
maximum possible SOS as well as the SOS for binomially
distributed user ratings are depicted. The entropy for the
binomial distribution depending on the MOS is given on the
right y-axis.
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Fig. 2: The cumulative distribution function (CDF) for dif-
ferent test conditions is given for user ratings following a
binomial distribution.

From Eq.(4), the parameter p can be computed p = x/N for
any given x.

The standard deviation of U ∼ BINO(N, p) is

STD [U ] =
√
N · p · (1− p) =

√
x− x2

N
. (5)

We now take a closer look at the relation between SOS and
of MOS in Eq.(5) and compare it with the SOS hypothesis in
Eq.(2).

√
a(−x2 +Nx) =

√
x− x2

N
(6)

Thus, for binomially distributed user ratings, then a = 1
N ,

which implies a = 0.25 when N = 4.
Figure 1 shows the relationship between MOS and SOS.

For any given MOS x, there exists a maximum possible SOS
as a result of the discrete rating scale. Further, the relationship
between MOS and SOS is shown for user ratings following a
binomial distribution a = 0.25 on a 5-point rating scale. Each
test condition will lead to one point on the curve, i.e. a tuple of
MOS and SOS value. The subjective results of the web QoE
study in Section IV-A lead to a SOS parameter of ã = 0.27.
Here, the binomial distribution can be used to describe the
entire distribution of user ratings for any obtained MOS value
x. The curve for entropy has the same shape as the SOS curve,
as most uncertainty about the measurement system and user
ratings is given in the middle of the rating scale.

For binomially distributed user ratings, Figure 2 shows the
cumulative distribution function (CDF) of the user ratings
U for different MOS values x ∈ {1.2, 2.0, 2.8, 3.6}. Each
test condition will lead to one instantiation of the binomial
distribution with parameters corresponding to the MOS value
observed for that test condition. Beside the MOS, the α-
quantile is given for α = 0.9. While the MOS value represents
the average user rating, the quantile quantifies the opinion
score that the fraction α of users observes at most. In the
next sections, we will investigate the difference between MOS
and quantiles for subjective studies on web and video QoE,
and discuss how to apply the quantiles to add value to the
management of QoE.

IV. APPLICATION TO REAL DATA SETS

A. Example Use Case: Web QoE

We consider in the following the results from a subjective
user study on web QoE which is based on the experiments in
[13]. Subjects were browsing a set of web pages while the page
loading times (PLT) were delayed to quantify the impact of
PLT on web QoE. The participant interacted with a Java applet
that already contained the contents of the websites. The applet
simulated the download of various web pages with predefined
page load times. The web page also contained rating buttons
from 1 to 5, which were used by the test user to give
his/her personal opinion score during the browsing session.
In particular, subjects were asked to answer the question “Are
you satisfied with this download speed?”.



0 1 2 3 4
0

0.5

1

1.5

2

MOS

S
O

S

 

 

0

0.5

1

1.5

2

en
tr

op
y 

(n
at

)

subjective results from
web browsing study
SOS hypothesis:
a=0.27, MSE=0.0094
binomial distribution
a=0.25, MSE=0.0126

(a) For the web study, there is a good fit between estimated (’�’) and
theoretical SOS. The entropy (marked with ’�’ on right y-axis) is an
additional quantification of the uncertainty in the opinion scores.
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(b) Probability Pθ = P (U ≤ θ) of opinion score below acceptance
threshold θ for the web QoE study (left y-axis) in comparison to
MOS values (marked with ’�’ on right y-axis).
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(c) With MOS above the threshold, MOS > θ for the web browsing
study, the ratio of dissatisfied users, Pθ is significant.
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(d) The 10 %- and 90 %- quantiles for the web browsing study are
significantly different from the MOS.

Fig. 3: Web browsing study [13]: The page load time was influenced for each test condition and 72 subjects rated the overall
QoE. Each user viewed various web pages with different PLTs resulting into 40 test conditions per user.

During the tests, a user viewed 40 web pages. There were
72 users completing the online test. The maximum PLT was
only 1.2 s in order not to scare the users away due to long
waiting times and an accordingly frustrating user experience.
The minimum and the mean PLT were 0.24 s and 0.66 s.

Figure 3a shows the relationship between SOS and MOS
and reveals the diversity in user ratings. The tuple of MOS
and SOS from the subjective ratings is plotted with a red
diamond for each test condition. In addition, the entropy for
each test condition is given, which quantifies the uncertainty
in the measurement system and the unpredictability of the user
ratings. This means that even for a given MOS the individual
user rating is relatively unpredictable due to the user rating
diversity which is also expressed by the higher entropy values.

The results in Figure 3a confirm the SOS hypothesis and
the SOS parameter is obtained by minimizing the least squared
error between the subjective data and Eq. 2. As a result, a SOS
parameter of ã = 0.27 is obtained. The mean squarred error
(MSE) between the subjective data and the SOS hypothesis
(solid curve) is close to zero, indicating a very good match. In
addition, the MOS-SOS relationship for the binomial distribu-
tion (a = 0.25) is plotted as dashed line. It can be seen that the
results can be approximated nicely by the binomial distribution
(MSE=0.01). Thus, the theoretical results in Section III-C are
valid for this web QoE study too.

Figure 3b uncovers the averaging effect of the MOS which
is not sufficient to fully understand the results for the sub-
jective study. In particular, the empirical probability of an
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(a) For the video QoE study, the SOS values (marked with ’�’ on left
y-axis) and the related entropy quantity (marked with ’�’ on right
y-axis) are given depending on the MOS value.
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(b) Probability Pθ = P (U ≤ θ) of opinion score below acceptance
threshold θ for the video QoE study (left y-axis) in comparison to
MOS values (marked with ’�’ on right y-axis).
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(c) With MOS above the threshold, MOS > θ for the video QoE
study„ the ratio of dissatisfied users, Pθ is significant.
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(d) The 10 %- and 90 %- quantiles for the video QoE study are
significantly different from the MOS.

Fig. 4: Video QoE study [14]: Video quality was affected by resolution, amount of motion and loss process in the network.
For this study, 24 subjects rated audiovisual, then audio and video quality for IPTV-like streams. These results correspond to
the video quality ratings for 61 conditions.

dissatisfied user is related to the observed MOS values (plotted
as diamonds). It can be seen that even for good overall MOS
values, a significant number of users perceives the quality as
bad or very bad.

In Figure 3c the probability of a dissatisfied user, Pθ, is
plotted for two threshold values, θ = 1 and θ = 2 for the
binomial distribution. The corresponding MOS values are also
included for each of the 40 web tests, and the threshold values
are indicated. From the plot it is apparent that even the MOS
is above the threshold, a significant amount of the users are
dissatisfied, measured as the probability of dissatisfied user,
Pθ. E.g., with threshold values θ = 1 and θ = 2, for all tests
where the MOS are above the threshold, the Pθ is as much as

60% when the MOS are close to the threshold, and even as
much as 30% when MOS− θ ≈ 1.

This information, while very significant to service providers,
is masked out by the MOS. Thus, the entire distribution,
the ratio of dissatisfied users or other measures need to be
reported. While the SOS values reflect the user diversity, and
the entropy the measurement uncertainty, the quantiles help
to understand the fraction of users with very bad (e.g. 10 %
quantile) or very good quality perception (e.g. 90 % quantile).

Figure 3d shows the measured quantiles (as well as the
quantiles from the binomial distribution) compared to the
MOS values for α = 0.1 and α = 0.9, respectively. The
difference between the MOS value and the α-quantile is



significant, with a maximum difference of 1.5 on the rating
scale. Thus, a fraction α of users rates an opinion score
which is up to 1.5 away from the MOS. The MOS hides
this information which may be very valuable and important
for the service provider. Quantiles of subjective user ratings
will give additional relevant information and we recommend to
provide the 10 %- and the 90 %-quantiles to fully understand
the meaning of the results. By means of the SOS parameter
a, appropriate distributions can be selected for the fitting, like
the binomial distribution in case of the web QoE results with
a = 0.25. Then, the entire information (i.e. CDF, quantiles,
ratio of dissatisfied users, entropy) can be derived.

B. Example Use Case: Video QoE

In this section, we consider a portion of the results presented
in [14], where an audiovisual model for IPTV-like streaming
was proposed. In the study, 24 users assessed first audiovisual,
then audio and video quality under a variety of conditions
(among which 61 effectively different ones for video). The
parameters considered included the video resolution, amount
of movement, and the loss process (loss rate and burstiness)
in the network.

In contrast to the results for web QoE, the user ratings do
not follow a binomial distribution but show lower variances,
see Figure 4a. We further observe that the SOS values are
more spread around the SOS hypothesis curve. This is an
indicator that important influential factors are not included in
the measurements. In this experiment, this might be because
the video and audio were assessed at the same time. This
can also be seen from the entropy values. The uncertainty in
the measurements system depends less on the MOS values,
which implies that not all factors (user and system related)
are captured. Therefore, we recommend to provide information
about SOS-MOS relationships and entropy.

Similarily to the web experiments, we take a closer look at
the probability of an dissatisfied user for the video experiments
in Figure 4b and compare it with the MOS value. Again,
it can be also observed that the MOS values hide relevant
information for the service provider about the ratio of dissat-
isfied users. Figure 4c visualizes the probability that a user is
dissatisfied (i.e. Pθ = P (U ≤ θ), although the MOS value
exceeds this threshold. The results show that up to 60 % of
users are happy, although the MOS is larger than θ. To quantify
the ratio of users at the edge, it is therefore recommended to
provide quantiles as in Figure 4d. For the video experiments,
no simple distribution can be used to fit the user ratings. In
such a case, it is recommended to estimate the quantiles and
CDF from the dataset to get a better view on the user ratings.

V. CONCLUSIONS

In this paper we state the case for using different quantities
for describing the results of QoE assessments. These quantities
give more insights and are of especial importance for service
providers to understand QoE. We recommend to use:
1, MOS: average user rating for one test condition
2, SOS: user diversity for that test condition

3, Quantile: user rating of fraction of (satisfied, dissatisfied)
users close to the acceptance threshold, θ

4, Entropy: the uncertainty of the measurement system and
the unpredictability of individual user ratings

5, Probability distribution: complete information about the
randomness in the opinion score.

For many experiments, a compact description of the results
is possible via the SOS parameter a. This allows to rebuild
the entire distribution as we have demonstrated for the web
QoE experiments. There, the distribution of user ratings could
be described by the binomial distribution with a = 0.25.
With the complete information from the distribution, other
measures beyond MOS like quantiles can be computed to
get significant insights relevant for service providers. This has
been demonstrated for dissatisfied users where a significant
large number of users was not satisfied, although the overall
MOS score was above a certain threshold. For cases where the
assessments don’t follow a binomial distribution, the quantiles
or CDF can be estimated from the dataset.

The availability of these results is important to better
understand some business-related aspects of services, such as
the ratio of dissatisfied users, which is useful for predicting
churn rates. Likewise, going beyond the MOS allows service
providers to better provision their services so that a target
fraction of the user population is satisfied.
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