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Abstract—In the context of subjective user studies conducted
to derive relationships between influence factors and QoE, user
diversity leads to distributions of user scores for test condi-
tions. Such models are commonly exploited by service/network
providers to derive various QoE metrics in their system, such
as expected QoE, or the percentage of users rating above a
certain threshold. The question arises as to how to combine a)
user rating distributions obtained from subjective studies, and b)
system performance condition distributions, so as to obtain the
actual observed QoE distribution in the system? Moreover, how
can various QoE metrics of interest in the system be derived?
We prove a fundamental relationship showing that the expected
system QoE is equal to the expected Mean Opinion Score (MOS)
in the system. While subjective user studies commonly report
only QoS-to-MOS mapping functions, we show that to derive
additional QoE metrics in the system, it is necessary to use
corresponding QoS-to-QoE metric mapping functions (beyond
only QoS-to-MOS) as derived from user rating distributions in
subjective studies. The results of the paper provide important
insights for deriving QoE metrics from a systems perspective.

Index Terms—QoE fundamentals, expected system QoE,
expected MOS, Good-or-Better (GoB), QoS mapping functions
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I. INTRODUCTION

One of the main research challenges faced by the the QoE
community is deriving QoE models for various applications
and services, whereby ratings collected from subjective user
studies are used to model the relationship between tested
influence factors and QoE. With it being well known that
different users perceive both quality and value differently [1],
user diversity will inherently impact the distribution of rating
scores for a given test condition [2], [3]. However, the majority
of user studies to-date still report only on MOS (Mean Opinion
Score) values and confidence intervals, and utilize these values
to derive QoE models. When focusing on technical Quality
of Service (QoS) influence factors, this leads to the common
reporting of so-called QoS-to-MOS mapping functions.

Previous work has argued that from a service/network
provider perspective, there is a likely interest in additional
metrics beyond MOS values, thus providing deeper insight into
rating distributions and how various conditions are perceived
by the user population [3]–[5] (as opposed to how conditions
are perceived by an “average user”). As an example, the GoB
metric gives the probability that for a given condition, the user
rating will be “good or better” [6] (e.g., on a 5 pt. Absolute

Category Rating, ACR, scale, this corresponds to a rating
of 4 or 5). In addition to a QoS-to-MOS mapping function,
the results of a user study could thus be used to derive and
report also a QoS-to-GoB mapping function. Such a mapping
function could subsequently be used by a service or network
provider in the context of QoE management when aiming to
maximize the percentage of “happy” users in the system [7].
To generalize, subjective studies are used to derive QoS-to-
QoE mapping functions, where QoE in this context can refer
to any QoE metric of interest (e.g., MOS, GoB).

Moving from the domain of user studies to the systems
domain, we consider service/network providers interested in
deriving various QoE metrics in their system, given (a) the
system performance, and (b) QoE models available from user
studies. To put it in a mathematical context, we observe a
certain performance in a system which is described by a
random variable (RV). Assuming, for illustration purposes, a
Web-based service, system performance may be quantified by
the response time R experienced by the end user. As a result,
we have a response time distribution in the system, meaning
various users will experience different response times. On the
other hand, going back to the results of subjective studies, we
know that the user ratings for a certain performance (response
time) also follow a distribution. Hence, due to user diversity,
the experienced QoE for a certain response time R = t is
again a distribution Q|t. The question arises as to what is
the observed QoE distribution Q in the system, when R is
a random variable of the system’s performance and Q|t is a
random variable of the user’s QoE for R = t? Moreover, how
can various QoE metrics in the system be derived, such as
expected QoE and expected GoB?

We highlight the following key contributions of the paper:
X We prove a fundamental relationship showing that the

expected system QoE is equal to the expected MOS in
the system, despite the fact that the actual QoE distribution
in the system is not (necessarily) equal to the MOS distri-
bution in the system. We note that the MOS distribution in
the system is obtained by mapping response times to MOS
values as per a given QoS-to-MOS mapping function.

X We show that to derive additional QoE metrics in the
system it is necessary to use corresponding mapping
functions derived from user rating distributions in subjec-
tive studies. E.g., to derive the expected GoB metric in
the system, a QoS-to-GoB mapping function is needed. If978-1-5386-8212-8/19/$31.00 c©2019 IEEE



only a QoS-to-MOS mapping function is available, it is not
possible to derive the expected GoB in the system.

X We show that to derive the complete QoE distribution in a
system with a given system performance distribution, we
need to know the distributions of rating scores observed in
the subjective study per tested performance condition. As
a case study, we use the example of Web QoE to derive
the QoE distribution in an example system (which includes
some common pitfalls).

To stress the implications of these contributions, we again
highlight the link between the QoE community, systems com-
munity, and end users: if researchers conducting subjective
user studies provide different QoS-to-QoE mapping functions
for QoE metrics of interest, this is enough to derive corre-
sponding QoE metrics from a system’s perspective. This
holds for any QoS (e.g., response time) distribution in the
system, as long as the corresponding QoS values are captured
in the reported QoE models.

The remainder of the paper is structured as follows. Sec-
tion II provides the fundamental relationship between the
system’s QoE and the subjective user studies for arbitrary QoE
metrics. Section III discusses the fundamental relationship
using Web QoE as a case study, and gives some additional
results when using different QoE mapping functions (based
on page load times or SpeedIndex). Section IV discusses the
implications of our insights and concludes the paper.

II. FUNDAMENTAL RELATIONSHIP

Figure 1 provides an overall picture on system QoE. In
a system, its users will experience different performance
measures like response times, throughout, etc. The system’s
performance depends on both its configuration and its im-
plementation. However, since the system utilisation varies as
the offered load (requests) varies, the users will experience
different response times, which can be represented by a
random variable R for the response time. The cumulative

TABLE I
NOTION AND VARIABLES USED IN THIS PAPER. RANDOM VARIABLES (RV)

ARE MARKED ACCORDINGLY.

notion description

General
E[X] expected value of random variable X
E
[
Xk

]
k-th moment of X , k ∈ N

System variables
λ arrival rate of requests at server
µ service rate of server
R system response time (RV), R =W +B

QoE variables
n discrete QoE rating scale with items 0, 1, . . . , n
Q observed QoE distribution in the system (RV)
Q|t QoE distribution for fixed t observed in subjective study (RV)
f(t) mapping function between response time t and MOS E[Q|t]
β QoE sensitivity parameter of the MOS mapping function f(t)
M MOS distribution in the system, M = f(R)

distribution function (CDF) , R(t), and the probability density
function (PDF), r(t), of the response time is:

R(t) = P (R ≤ t), r(t) =
d

dt
R(t) (1)

Two different users experiencing the same system condition
(e.g., response time) t may rate the situation differently due
to user diversity. This is represented by a random variable Q|t
for the QoE user ratings, given the same system condition t,
with the CDF Q(i|t) and probability mass function (PMF),
q(i|t) as follows

Q(i|t) = P (Q ≤ i|R = t), (2)
q(i|t) = P (Q = i|R = t) (3)

Q is the random variable for the QoE user ratings over all
the system performance conditions, with the CDF Q(i) and
probability mass function (PMF), q(i) as follows

Q(i) = P (Q ≤ i) =

∫ ∞

t=0

Q(i|t)r(t)dt (4)

q(i) = P (Q = i) =

∫ ∞

t=0

q(i|t)r(t)dt (5)

The probabilities q(i|t) (and Q(i|t)) may be estimated from
user ratings obtained by means of subjective studies, e.g., in
the laboratory, via crowdsourcing, or by field trials, as long as
the system condition t is observed. We consider here the case
of a discrete rating scale like a 5-point ACR scale. We use a
discrete rating scale with items 0, . . . , n where 0 indicates the
lowest QoE and n indicates the highest QoE of the scale.

A system provider is interested in the QoE distribution Q(i)
which includes the stochastic components that are 1) system
performance condition (i.e. response time in our example) and
2) user diversity.

Fundamental question: what kind of information is
required from subjective studies, such that the system
provider may derive the metrics of interest from the
distribution of Q, also when the system performance
distribution R(t) changes?

The R(t) might change due to reconfiguration or reimple-
mentation of the system and its service, or due to changes
in the offered load or system utilisation. In user studies, the
Q(i) typically has been obtained under certain (controlled
or observed) system performance conditions, which do not
reflect the R(t) (i.e., current system performance distribution).
Metrics of interest include expected system QoE E[Q] and the
ratio of users rating Good-or-Better GoB[Q] = P (Q ≥ k)
where k indicates ’good’ on the rating scale.

A. Expected User Rating vs. Expected MOS

In Eq. (3) the distribution of the QoE user ratings i under a
specific system performance condition t is given. The expected
user rating under t is

E[Q|t] =

n∑

i=0

iq(i|t) (6)
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Fig. 1. Overview on system QoE (being observed in a real system) and user rating distributions in a subjective study.

Let f(t) = E[Q|t] be the MOS mapping function between
the condition t and the MOS rating.

Expected system QoE and expected MOS. The ex-
pected system QoE is equal to the expected MOS,
E[Q] = E[f(R)] = E[M ]

where the random variable M of MOS ratings is the nor-
malised transformation from the random variable R of system
conditions using the MOS mapping function, M ∼ f(R). This
equality1 follows from

E[Q] =

n∑

i=0

iq(i) =

n∑

i=0

i

∫ ∞

t=0

q(i|t)r(t)dt

=

∫ ∞

t=0

r(t)

n∑

i=0

iq(i|t)dt =

∫ ∞

t=0

r(t)E[Q|t] dt

=

∫ ∞

t=0

r(t)f(t)dt = E[f(R)] = E[M ] (7)

The E[Q] is the expected value of Q over the distribution of Q,
while E[M ] is the expected value of M over the distribution
of R.

QoE and MOS distributions inequality. Even if the
expected system QoE is equal to the expected MOS,
this does not imply that the QoE and MOS distributions
are necessarily equal, i.e., E[Q] = E[M ] does not imply
Q

d
=M

The mapping function f(t) is continuous, since t is contin-
uous. However, the subjective studies will typically cover only
a few instants of the response time only due to cost reasons.
Then, a continuous mapping function f like the exponential
function suggested by the IQX hypothesis [8] needs to be fitted

1The relations can be derived analogously for continuous rating scales (by
using the probability density functions instead of probabilites and replacing
sums with integrals throughout).

to the collected MOS values. Please note that we do not need
any assumptions on the user rating distribution Q|t, response
time distribution R or the MOS mapping function f(t).

In practice, it is tempting to measure the expected response
time E[R] and then to apply the MOS mapping function f to
get the expected MOS (i.e. the expected user rating). However,
the relation between response time and MOS is in general a
non-linear function, which implies that

E[Q] = E[f(R)] 6= f(E[R]) (8)

In general, E[f(R)] 6= f(E[R]), except when f is a linear
transformation. E.g., if f(t) = t2 you see that f(E[R]) =
(E[R])2 is not the same as E[f(R)] = E

[
R2
]
.

Figure 3 shows the MOS mapping function f(t) used in
the numerical results which follows an exponential function
according to the IQX hypothesis. Hence, f(t) is convex.

Jensen’s inequality. If f(t) is a convex function, the
mapped MOS value of the average response time,
f(E[R]), is smaller than the expected MOS E[f(R)]

f(E[R]) ≤ E[f(R)] = E[M ] = E[Q] (9)

Figure 2 shows the system QoE distribution and the MOS
distribution for the web QoE example (which will be discussed
in Section III).

B. Variance of User Ratings

Eq.(7) can be generalised to derive the k-th order moments

E
[
Qk
]

=

∫ ∞

t=0

r(t)E
[
Qk|t

]
dt =

∫ ∞

t=0

r(t)fk(t)dt

= E[fk(R)] (10)

As a consequence, for higher order moments, it is necessary
to determine the corresponding mapping functions fk(t). If
the provider is interested for example in the second order
moment (or e.g., standard deviation of opinion scores), then a
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Fig. 2. QoE distribution Q vs. MOS distribution M for the web QoE example
where high and low system load is considered.

corresponding mapping function f2(t) is required which may
also be obtained from subjective studies. In addition to the
MOS values, e.g. the SOS values [3] need to be reported.

Alternatively, other models may be used to derive the higher
order (central) moments from the MOS. The SOS hypothesis
relates the standard deviation of opinion scores to MOS values
based on a single parameter a. For a MOS value µ, the
variance σ2 is as follows (on a rating scale with lower bound
0 and upper bound n).

σ2(µ) = a(n− µ)µ (11)

The variance can also be expressed by the first two moments
of the user ratings Q|t.

Var[Q|t] = E
[
Q|2t
]
− E[Q|t]2 = f2(t)− f1(t)2 (12)

Since f1(t) = µ and Var[Q|t] = σ2(µ), then combining
Eq.(11) and Eq.(12) leads to

f2(t) = a (n− f1(t)) f1(t) + f1(t)2

= (1− a)f1(t)2 + a · n · f1(t) (13)

Without assumptions such as the SOS hypothesis, it is
necessary to obtain corresponding mapping functions fk(t)
for each k’th order moments from subjective studies.

C. GoB Ratio

The probability that the QoE Q is rated good or better is
denoted as GoB[Q,α] = P (Q ≥ α). Commonly, a value of
α = 3

4n is chosen [3]. For example, on a 5-point ACR scale,
4 indicates a value of good and it is α = 3

4 (5 − 1) on the
shifted rating scale from 0, . . . , 4.

GoB[Q,α] = P (Q ≥ α) =

n∑

i=dke
P (Q = i)

=

n∑

i=dke

∫ ∞

t=0

q(i|t)r(t)dt =

∫ ∞

t=0

r(t)

n∑

i=dke
q(i|t)dt

=

∫ ∞

t=0

r(t)GoB[Q|t, α]dt =

∫ ∞

t=0

r(t)g(t)dt

= E[g(R)] (14)

Again, for deriving the QoE metric GoB for the system
QoE distribution Q, it is necessary to provide a GoB mapping
function g(t) = GoB[Q|t, α] for the response time t for
acceptance level α. It is not possible to derive the GoB from
the MOS distribution M .

D. User Distribution

To derive the complete distribution of the random variable
Q, it is necessary to have the distribution q(i|t) = P (Q =
i|R = t).

P (Q = i) =

∫ ∞

t=0

P (Q = i|R = t)r(t)dt

=

∫ ∞

t=0

P (Q|t = i)r(t)dt , ∀i = 0, . . . , n (15)

III. WEB QOE EXAMPLE

Let us consider a single web server offering users a certain
service, say, access to a static site. We chose this use case,
since there exist several web QoE models that may be utilized,
and the system itself can be be modeled simply as a queueing
system, for which analytical results are well known. We use
these results to illustrate the system QoE perspective. Please
note that the analysis described here can be applied similarly
to more complex models of web QoE and of web servers’
performance, which are however not the scope of this paper.

A. System Model

The system comprises a single server, and user requests
arrive according to a Poisson process with rate λ. The
server has a single processing unit which serves request
in a first-come-first-serve (FCFS) manner with rate µ. If
the server is occupied, arriving requests need to wait until
they are served. An unlimited waiting room for the incom-
ing requests is assumed. With the request interarrival times
and the service times following an exponential distribution,
A ∼ Expo(λ), B ∼ Expo(µ), this is a classic M/M/1-FCFS
waiting queue with the following well known response time
distribution R ∼ Expo(µ−λ). In a stable system, it is µ > λ
or in other words ρ = λ/µ < 1.

R ∼ Exp(µ− λ) (16)

R(t) = 1− e−(µ−λ)t (17)

r(t) = (µ− λ)e−(µ−λ)t (18)

E[R] =
1

µ− λ (19)
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with n = 4 for differerent sensitivity parameters β: f(t) = ne−βt.

B. QoE Model

A recent web QoE model [9] describes an exponential rela-
tionship between the speed index (SI) as proxy for perceived
page load times (PLT) and MOS values. Also the PLT itself
leads to a rather accurate mapping to MOS. In the M/M/1
model, the PLT may be modeled as the response time R. The
speed index may be modeled as a smooth linear progress of
the service delivery which then sums the waiting time W and
the service time B, SI = W+B/2 (see [9] for its derivation).
In contrast, PLT = R = W +B which we will use here.

The exponential mapping function in [9] follows the IQX
hypothesis and reveals a sensitivity parameter β, with β ∼
0.25. The MOS mapping function maps a response time t
to a MOS value f(t) which is normalized to the rating
scale between 0, . . . , n. Figure 3 visualizes the MOS mapping
function including our case of β = 0.25 for n = 4 (i.e., a
5-point scale).

f(t) = ne−βt (20)

In [3], it is shown that the opinion scores Q|t for a web
QoE study can be very well approximated with a binomial
distribution for various t. In that subjective study, the page
load time was influenced for each test condition and rated by
72 subjects.

Thus, for any response time t, we may approximate the
distribution of Q|t with a Binominal distribution, Q|t ∼
Bino(n, p) with E[Q|t] = np. With E[Q|t] = f(t) in Eq.(20),
then Q|t ∼ Bino(n, e−βt), and we finally arrive at

P (Q|t = i) =

(
N

i

)
e−iβt(1− e−βt)n−i (21)

C. Results: Expected User Rating

The expected user rating E[Q] = E[f(R)] can be derived
from Eq.(7) by utilizing the MOS mapping function (Eq.(20))
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Fig. 4. Expected system QoE E[Q] depending on the system load ρ for
different service rates.

and the response time density function (Eq.(1)).

E[Q] = E[f(R)] = E[M ] =

∫ ∞

t=0

r(t)f(t)dt (22)

=

∫ ∞

t=0

(µ− λ)e−(µ−λ)t · ne−βydt = n
µ− λ

µ− λ+ β

Please note that the expected response time E[R] mapped
to MOS is different as shown in Eq.(8).

f(E[R]) = f(
1

µ− λ ) = ne−
β

µ−λ 6= E[Q] (23)

Figure 4 shows the expected system QoE depending on the
system load ρ = λ/µ for different service rates. For higher
service rates (but same load and thus higher arrival rates), the
expected QoE increases, since we have the following relation.
k > 1⇔ n k(µ−λ)

k(µ−λ)+β > n µ−λ
µ−λ+β .

D. Results: System QoE Distribution

From Eq.(15), the system QoE distribution can be derived.
The analytical expression was derived with Mathematica and
includes the Gamma function Γ (x) =

∫∞
0
sx−1e−sds. We

obtain for i = 0, . . . , n.

P (Q = i) =
(µ− λ)

(
n
k

)
Γ(−k + n+ 1)Γ ((kβ − λ+ µ)/β)

βΓ ((nβ + β − λ+ µ)β)

P (Q ≤ i) =
Γ(n+ 1)Γ ((iβ + β − λ+ µ)/β)

Γ(i+ 1)Γ ((nβ + β − λ+ µ)/β)
(24)

Figure 5 shows the distribution of the system QoE as well
as the expected QoE E[Q] depending on the system load ρ.

We can also derive the MOS distribution M of the system
based on the inverse MOS mapping function.

f−1(x) = − 1

β
log

x

n
(25)
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Fig. 5. Distribution of the system QoE wrt. load ρ for n = 4 and β = 0.25.
In addition, the expected QoE E[Q] = E[f(R)] and the expected response
time mapped to MOS f(E[R]) are plotted.

The cumulative distribution function is as follows. Please note
that the mapping function f is strictly monotonically decreas-
ing, therefore we have to turn the ≤ sign into a > sign when
applying the inverse function f−1: f(R) ≤ x→ R > f−1(x).

M(x) = P (f(R) ≤ x) = P (R > f−1(x))

= 1−R(f−1(x)) = (x/n)
µ−λ
β (26)

Figure 2 shows the system QoE distribution Q and the MOS
distribution M = f(R) for a highly loaded system (ρ = 0.91)
and a lowly loaded system (ρ = 0.5). We see clear differences
between both functions.

IV. DISCUSSION AND CONCLUSIONS

Service and network providers rely on QoE models (often
in the form of QoS-to-MOS mapping functions) for estimating
and / or predicting user perceived service quality in their
systems. A common approach is to use the distribution of
MOS scores in the system (as obtained from a QoS-to-MOS
mapping function) to draw conclusions with respect to the
QoE distribution (or other QoE metrics) of users in the system.
These metrics are then further used to drive QoE optimization
and management decisions [10]–[12]. Similarly, [13] analyzes
MOS distributions, but states that “[...] the ultimate goal is
to predict the distribution of user ratings”. This will “[...]
give operators and service providers a holistic view of service
quality.” Especially in 5G, a user-centric design is foreseen
requiring to consider system QoE [14].

In this paper, we draw the attention of the systems commu-
nity to the fact that the actual QoE distribution in a system is
not (necessarily) equal to the MOS distribution in the system.
The current systems literature however, indicates that there is
clearly lack of a common understanding as to what are the
implications of using MOS distributions rather than actual
QoE distributions. We provide important insights to raise
awareness and foster further research in this area; targeting

also the QoE community, and once again highlight the need
for reporting QoE metrics and mapping functions beyond just
those relying on MOS (e.g., GoB). For example, it is not
possible to derive the ratio of users experiencing good or better
(GoB) quality in the system by utilizing the MOS mapping
function to obtain the MOS distribution. Instead, a QoS-GoB
mapping is required.

We further prove a fundamental relationship showing that
the expected QoE in the system is in fact equal to the expected
MOS, despite the fact that the QoE and MOS distributions are,
in general, different. We also show that to derive additional
QoE metrics in the system, corresponding mapping functions
derived from user rating distributions need to be reported by
researchers performing subjective studies.
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