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Abstract. Quantifying the quality of a video or audio transmission over
the Internet is usually a hard task, as based on the statistical processing
of the evaluations made by a panel of humans (the corresponding and
standardized area is called subjective testing). In this paper we describe
a methodology called Pseudo-Subjective Quality Assessment (PSQA),
based on Random Neural Networks, which is able to perform this task
automatically, accurately and efficiently. RNN had been chosen here be-
cause of their good performances over other possibilities; this is discussed
in the paper. Some new insights on PSQA’s use and performance are also
given. In particular we discuss new results concerning PSQA–based dy-
namic quality control, and conversational quality assessment.

1 Introduction

When we need to quantitatively assess the quality of an audio or video trans-
mission over the Internet, the most accurate way to do it is to have a panel of
humans perform the assessment on actual test sequences representative of the
conditions studied. This is a standard procedure for which norms exist (see Sub-
section 2.1 for examples on voice multimedia communications). There are some
methods to do an automatic quantitative assessment as well, that is, without
using subjective tests, but they suffer either from poor accuracy or efficiency, or
both (see Section 2). As an alternative, the Pseudo-Subjective Quality Assess-
ment (PSQA) technology has been recently developed. It allows to automatically
quantify the quality of a video or audio communication over a packet network,
as perceived by the user. The PSQA technique is accurate, which means that
it correlates well with the values given by panels of human observers, and effi-
cient, because it can work, if necessary, in real time. It has been tested on video
[10] and audio [13] flows. It can be applied in many areas, for instance, for the
analysis of the impact of different factors on quality (see the mentioned papers,
and [12] for an example of the study of Forward Error Correction techniques
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in audio streaming), or for performance evaluation of communication networks
using models [14].

PSQA is based on learning how human observers quantify the quality of a flow
under standardized experimental conditions. The learning process consists of
training a particular type of Neural Network, a Random Neural Network (RNN),
to capture the relation between a set of factors having an a priori strong impact
on the perceived quality and the latter. Let us briefly recall the structure of the
RNN tool, before describing in some detail the technique used for quantitative
quality assessment of video and audio flows. For a global presentation of PSQSA
with a detailed description of the RNN tool see [11].

RNN have been developed by Erol Gelenbe in a series of papers (for starters,
see [1], [3], [2]). In this paper we will use 3-layer feedforward RNN. Such a network
can be seen as a parametric function ν() mapping a vector of size I +J , denoted
here (C, N) = (C1, · · · , CI , N1, · · · , NJ), into a real number. Let us denote by
vector W the function’s parameters. The input variables C1, · · · , CI are related
to the network connection, or to the codec used (example: the bit rate), and the
variables N1, · · · , NJ correspond to the network state (example: the loss rate).
The value of the function is the quality of the audio or video connection. The
function’s parameters are the weights in the neural network.

As a neural network, our RNN has three layers, the input one with I + J
variables, the hidden one with H units, and the output layer with a single node.
The mapping can be explicitely written as
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is the activity rate of hidden neuron h. The strictly positive numbers ro, rh for
h = 1..H, ri for i = 1..I and rj for j = 1..J , correspond to the firing rates of the
neurons in the network (respectively, for the output one, the hidden nodes, and
the I + J input ones). The weights are the variables tuned during the learning
process. We denote by w+

uv (resp. by w−
uv) the weight corresponding to an exiting

(resp. inhibiting) signal going from neuron u to neuron v (observe that both
numbers w+

uv and w−
uv are ≥ 0). For the interpretation and the dynamics of a

RNN see the references cited above. For our purposes here, we can just see it as
a rational parametric function. Learning will thus consist of finding appropriate
values of the weights capturing the mapping from (c(k), n(k)) to the real number
q(k) where q(k) is the quality given by a panel of human observers to some audio
or video sequence (depending on the application) when the source parameters
had the values present in c(k) and the parameters caracterizing the network had
the values in vector n(k), for k = 1..K.

To be more specific, let us describe how PSQA is used, with a simple example.
Assume we have some audio or video stream whose quality, as perceived by the
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users, is to be evaluated. Assume we limit the application of PSQA to just I = 1
source parameter, the bit rate C1, and to J = 2 network parameters, the end-to-
end loss rate N1 and the mean size of bursts of (consecutive) lost packets, N2. The
goal of the process is to come up with a function ν(W ; C1, N1, N2) mapping the
values of these 3 parameters into quality, for instance in a standard MOS range.
We start by choosing K series of values for the bit rate, the loss rate and the mean
loss burst size, denoted (c(k)

1 , n(k)
1 , n(k)

2 ) for k = 1..K. Then, we select some short
(audio/video) sequence (norms recommend to use sequences with a few seconds
length) and we send it K times through a controllable network (using a testbed,
for instance), where in the kth case the three selected parameters have values
c(k)
1 , n(k)

1 and n(k)
2 . The K resulting sequences are shown to a panel of humans

and a subjective testing experiment is performed, following an appropriate norm
depending on the type of flow (see below), which allows to obtain the (measured)
perceived quality of each received sequence, denoted q(1), · · · , q(K). Then, a RNN
is trained to build such a ν() function, using the K input-output values obtained
from the testing phase. The usual way to do this is to separate this data into a
training part, used to build the approximation ν(), and a validation one, used
to test the predictive capacity of ν().

PSQA has been tested on video and on audio flows. In this paper, we will dis-
cuss only the latter, for sake of space. Next section describes previous and current
work on the quantitative analyses of the perceived quality of voice communica-
tions, with some new results concerning interactive voice sessions. Section 3 will
then discuss about the performance of our learning tool, RNN, as compared
to other available tools such as standard Artificial Neural Networks. Section 4
concludes the paper.

2 Using PSQA to Analyze Perceived Voice Quality

2.1 On Voice Quality Assessment

When assessing voice quality, there are two very different kinds of subjective tests
one can perform. The first kind, which is the one most widely used, is related
to the quality of the voice itself, and so it does not take other factors inherent
to conversation into account. We refer to these assessments as unidirectional,
since the only point of interest is the quality of the received signal. The other
kind of tests concern actual conversational quality, and in a way are a superset
of the first kind. In these, we not only consider the voice quality itself, but
also other factors (mostly delay-related) which affect the perceived quality of an
actual conversation. There exist standard procedures for performing subjective
assessments of both unidirectional (e.g. [6]) and interactive (e.g. [8]) speech.
Interactive tests are more difficult to set up and perform than unidirectional
ones.

In any case, all subjective tests are expensive in terms of time and money, so
a significant research effort has been directed toward developing objective tests.
These provide a cheaper and more practical alternative to subjective tests. Most
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subjective tests operate by comparing the received signal to the original one, and
estimating the quality from the difference between the two. The estimation can
be done by mechanisms ranging from a simple SNR measurement to very com-
plex psychoacoustic models. Of the methods available in the literature, only the
ITU E-model [4] and P.563 algorithm [5] can perform their assessment without
requiring the original signal. The accuracy of objective assessment techniques
is quite variable, in particular when considering VoIP. The best performance
among the purely objective metrics is that of PESQ [7], which attains up to
about 0.92 correlation with subjective scores (a typical “best score”).

The need for being able to accurately assess VoIP quality in real–time arises
in several scenarios, such as the development of dynamic quality–control mech-
anisms. Traditional methods of voice quality assessment tend to only cover one
of the two conditions needed. Either they are adequately accurate (i.e. PESQ)
but not able to perform in real–time, or they do work in real–time, but their
accuracy is not as high as needed (i.e. the ITU E–model).

In this respect, PSQA offers the best of both worlds, since it is very accurate,
and it can work in real–time. This is a consequence of not needing the original
signal to perform the assessment, and of the simplicity of the calculations on the
RNN.

2.2 Unidirectional Voice Quality Assessment and Its Applications

We have succesfully used PSQA to analize the ways in which different parameters
affect the voice quality for VoIP streams [13]. To this end, we used six quality–
affecting parameters, and using PSQA, we studied the relations between them
and the quality as perceived by the end user. The parameters considered were
the codec used, whether error correction was being used, the offset of the error
correction, the loss rate and mean loss burst size found in the network, and the
packetization interval (i.e. the length of the speech contained in each packet).

In this study, we obtained a 0.94 correlation coefficient between the RNN pre-
dictions and subjective scores, which is on par (slightly better, actually) with the
best objective assessment techniques currently available. The results obtained al-
low us to understand, for instance, how the loss rate affects the perceived quality,
for different codecs and with or without error correction. Figure 1(a), for exam-
ple, shows how the packetization interval and the mean loss burst size affect the
perceived quality.

An immediate application of these results is modifying application–level para-
meters to acommodate variations in the network conditions, improving, if possi-
ble, the perceived quality. We have developed two simple algorithms which allow
to manipulate the codec, forward error correction, and packetization interval
values to dynamically optimize the quality. The first algorithm takes a naive
approach, trying to keep the quality between two thresholds at all costs. The
second algorithm takes bandwidth consumption into account, and tries to keep
the quality between the same bounds, but resorting to lower bit rate encodings
whenever possible. Both algorithms present a similar improvement on quality
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over scenarios lacking dynamic control, and depending on network load, one may
perform slightly better than the other. Figure 1(b) shows the performance of the
simplest of both algorithms when the network conditions degrade.
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Fig. 1. (a) Variation of the perceived quality as a function of the Mean Loss Burst
Size (MLBS) and the Packetization interval, without error correction. Loss rate is 2%.
(b) Performance of a PSQA–based control algorithm based on the same RNN. The
network parameters found in these trace are as follows: Loss rate: 12.47%, Mean loss
burst size: 2.13 packets. Under these network conditions, the (naive) control algorithm
offers a noticeably better quality than when no control is used.

2.3 Conversational Quality Assessment

As mentioned above, conversational quality assessment is significantly more dif-
ficult to perform than the unidirectional one. To our knowledge, there is no
purely objective assessment method available in the literature able to predict
conversational quality, nor have there been subjective assessment campaign cov-
ering as many parameters as we used in our studies. We used PSQA to develop
an understanding of the how the conversational quality evolves with the differ-
ent parameters which affect it. In particular, we were interested in the relative
impacts of delay and loss rate on the overall quality.

The set of parameters we considered for this study were the bit rate (using
a single codec), the forward error correction settings, the packet loss rate and
mean loss burst size, and the one–way delay and its variability (jitter). As the
study was focused on VoIP, we used subjects with previous experience with
VoIP applications. The results we obtained with the RNN present a correlation
coefficient of 0.95 with subjective scores, which is very good. Given the large
parameter space considered, it is worth noting that the use of RNN for the
estimations allowed for excellent generalization capabilities.

Among the results we obtained by analizing the RNN behavior, the most in-
teresting one is that VoIP users seem much more tolerant to delay than it is
usually reported for PSTN systems (and by extension adopted for VoIP). More-
over, we found that the impact of the delay on the conversational quality was
relatively small compared to that of the loss rate, and that one–way delays as big
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as 600ms made little difference on the perceived quality for loss rates of about
7% and up. This is good news, since it allows implementors to use better loss
concealment or correction techniques, at the expense of delay, resulting in an im-
proved overall quality. Figure 2 shows the impact of delay on the conversational
quality for diferent loss rates.
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Fig. 2. Perceived quality as a function of delay for some loss rates (without FEC).
Jitter was 10% of the delay. Note how the impact of the delay diminishes as the loss
rate increases.

3 Comparing RNN Against Other Tools

As mentioned above, the choice of RNN over other tools for implementing PSQA
is not arbitrary. In [9], [10], a first performance comparison had been made, estab-
lishing that RNN offer two advantages over traditional ANN for our applications.
The first one is that of better generalization capabilities (i.e. less over-training).
Since our approach only allows for relatively few learning points in a vast input
space, this is a very important characteristic. The second advantage was that
RNN are less sensitive to variations in the number of neurons in the hidden
layer, which allows to obtain good performance without needing to optimize the
neural network architecture.

In this section we discuss more in deep about the performances of RNN com-
pared to Bayesian networks and standard ANN, the two families of alternate
tools we used. We also present results of new comparison tests between ANN
and RNN performance for both unidirectional and interactive VoIP applications.

3.1 Using Naive Bayesian Classifiers

We have tried naive Bayesian classifiers for providing MOS estimations for
PSQA. This was meant primarily to test their accuracy more than for production
use, since two reasons make them less desirable than RNN:

– they require a larger amount of training data, and
– they only provide classification into discrete values, whereas RNNs provide

a continuous, differentiable function.
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However, this kind of classifier is easier to implement than RNNs, and is
computationally trivial, which, despite the RNN’s simplicity, could be useful in
certain contexts where computing power or memory are very limited.

Naive Bayesian classification is based on the observation of a sufficiently large
amount of data, and the assumption that those observations are statistically
independent. We perform the classification by counting, for a large number of
assessments, the number of times each score happens for each value of each
parameter considered. This allows us to estimate, for each value of the selected
parameters, the probability that a given score will happen, looking at the quality
as a random object. In other words, we estimate the conditional probability of
the score (or quality) being equal to q given that C = c and N = n, for
any possible configuration (c, n) of the parameters’ values (we are assuming a
discrete range for quality as well as for the parameters). Then, we can find the
score which is most likely to be associated with each configuration.

As stated above, this approach needs a large body of data for the training
process. As not enough subjective assessments were available to train the clas-
sifier, we needed to generate data suitable for assessing the performance of this
tool. To this end, we generated a large set of assessments (covering the whole pa-
rameter space) with a previously trained RNN, and used them instead of actual
subjective scores.

We performed several tests, using over 20,000 configurations to train the clas-
sifier. Although validation results were reasonably accurate, the performance of
this classifier with configurations for which we had subjective scores was consis-
tently and significantly lower than that of the RNN.

Among the possible explanations for this bad performance, the foremost is
that the quality–affecting parameters, and their relation to MOS scores are not
actually independent. Given the results obtained, it is reasonable to think that
they are too correlated for the assumption of statistical independence to hold.

As mentioned before, even if this approach did perform well, it does not
offer the advantages of using a RNN, and in any case, it needs the RNN (or
another trained estimator) in order to compensate for the usual lack of available
subjective data.

3.2 RNN Compared to Standard ANN Tools

In our experiments, we also tested the performances of classical neural networks
in the previously described learning tasks for automatic perceived quality as-
sessment in VoIP applications. The global conclusion is that RNN outperforms
Artificial Neural Networks in our context. In this subsection we present fur-
ther results concerning the accuracy of PSQA when implemented with RNN
and ANN. To this end, we used 15 different training and validation sets, with
varying sizes and also by using different parts of the data for training and for
predicting, for both the one-way and interactive cases in VoIP communications.
We then trained RNN and an ANN with appropriate architectures and compared
their performances.
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In order for the comparison to be fair, we tried to optimize the performance
of the neural nets by using different number of hidden layers and different sizes
for those hidden layers. In the ANN case, we used commercial packages and thus
we looked at the results given by different training algorithms. The best results
in both types of networks were obtained with three-layer architectures. For the
ANN, the optimal hidden layer sizes were between 6 and 8 neurons, depending
on the input data, and for the RNN, a 10-neuron hidden layer provided the best
performance. For the RNN, we also considered the simplest architecture possible,
namely 6 input neurons, and one output neuron, with no hidden units, as [14]
reported acceptable results even with this simple structure. The best training
algorithms from the quality of the predictions were Levenberg-Marquardt for
the ANN. Our implementation of RNN only uses a simple gradient descent
algorithm.

Tables 1 and 2 show the sizes of the training, validation and testing sets used
(all randomly chosen). As classically done in neural network methodology, the
validation set was used to stop the training when the network generalized well,
in order to select good candidates in each family (ANN, RNN), and the test set
was used to mesure the real performance of the network (for the comparisons).

Table 1. Number of samples used to train, validate and test the neural nets (one-way
streams) in order to compare RNN vs ANN performance

Training Validation Test Training Validation Test Training Validation Test
92 10 10 82 20 10 72 20 20
92 10 10 82 10 20 72 30 10
92 10 10 82 10 20 72 10 30
82 20 10 82 10 20 62 10 40
82 20 10 72 20 20 62 20 30

Table 2. Number of samples used to train, validate and test the neural nets (interactive
streams) in order to compare RNN vs ANN performance

Training Validation Test Training Validation Test Training Validation Test
100 10 10 90 20 10 80 20 20
100 10 10 90 10 20 80 30 10
100 10 10 90 10 20 80 10 30
90 20 10 90 10 20 70 10 40
90 20 10 80 20 20 70 20 30

We found that, although the training error reached (calculated as MSE) is
about one order of magnitude lower for ANN than for RNN, the validation results
are consistently and significantly better for the RNN. Figures 3 (a) through (d)
show the results obtained for both one-way and interactive streams, for the 15
validation and test data sets.
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It is interesting that for the interactive scenario, the ANNs performance is
noticeably better than for the one-way case. However, the MSE obtained with
RNN are lower, and for the one-way case, the difference is very noticeable.
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Fig. 3. MSE comparison of RNN and ANN for (a) test data, one-way streams, (b) test
data, interactive streams (c) validation data, one-way streams and (d) validation data,
interactive streams

4 Conclusions

The PSQA technology allows to provide an accurate and automatic quantitative
evaluation of the perceived quality of an audio or video communication over a
packet network, where the flow is subject to different kinds of distortions (losses
by congestion, delays and jitter, etc.). It has been succesfully tested and used
on video and audio streams. In this paper we report novel results on interac-
tive speech quality, obtained by using a RNN-based PSQA tool, and about two
proof–of–concept PSQA–based dynamic quality control algorithms. The method
comes up with an approximation of the perceived quality as a nice function of
measurable parameters, thanks to the RNN technology. It can be applied to
the monitoring of an existing network or for control purposes, as well as to the
analyzing the impact of specific parameters on the perceived quality.

This paper also shows some results illustrating how RNN outperforms stan-
dard ANN as well as Bayesian networks in performing the assessment task.
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In particular, we have performed an in-depth performance comparison between
ANN and RNN–based PSQA implementations, both for unidirectional nad in-
teractive speech streams.

One of the topics of further research work is to extend these experiments to
more cases. Another important research direction for PSQA development is the
analysis of the impact of using more efficient learning techniques in the RNN
tool.
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