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Abstract
Pricing is regarded as a solution to congestion control in telecommunication net-
works. Most mathematical models involve a so-called utility function accounting
for the users’ willingness to pay. However, this utility function is unknown in prac-
tice in terms of shape and important arguments. We propose here to limit this degree
of uncertainty by aggregating all arguments in one quantity, the perceived quality
of service, estimated using a Random Neural Network as a statistical learning tool
according to the PSQA method. After arguing for this approach, we present a way
of applying this tool to a model with two types of traffic and two classes of customers
using strict priorities. We illustrate the proposal using a specific simple case.
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1 INTRODUCTION

Congestion control is an important issue in telecommunication networks, especially as applications
become more and more demanding in terms of quality of service (QoS). Looking at the Internet,
while congestion does not seem to be an issue anymore in the backbone thanks to the large capacity
of core networks, the problem still persists in access networks and also in wireless networks, which
are becoming ubiquitous.

Pricing has been seen as a valuable solution for controlling congestion [1]. A type of architec-
ture that has received much attention is DiffServ (for Differentiated Services) which separates the
network in classes treated differently thanks to a scheduling policy (say, strict priority). Several an-
alytical studies of such pricing schemes can be found in the literature [4, 6]. Those mathematical
models are based on a characterization of users’ behaviour through a utility function representing
their willingness to pay for a given value of performance.

For tractability reasons, and based on some (a priori relevant) heuristics, the shape of those func-
tions is imposed, as well as the arguments they depend on, generally the mean delay, or the mean
and/or peak throughput. However, very few studies exist on what should be the important arguments
(the quality) and how they interact, as well as on how much users are willing to pay for a given qual-
ity. We propose here to base our analysis on a single quantity representing the perceived quality of
service for each specific type of application. This value is determined by a Random Neural Network
(RNN) used in a technique called Pseudo–Subjective Quality Assessment (PSQA), that learns from
human input how to aggregate important arguments (such as delay, jitter, losses, consecutive losses,
codec, etc.) into a real number Q which is close to the average quality perceived by human subjects.

The validity of the approach has been extensively investigated in [7, 9]. It presents the advantage
of reducing the number of degrees of freedom of the model, which in our opinion constitutes a
significant improvement over previous works. The paper is organized as follows. In Section 2, we
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introduce this quality assessment technique, its mathematical foundations and its practical validity.
In Section 3, we present a pricing model for the DiffServ architecture that makes use of those RNN.
This model is mathematically analysed in Section 4 in the case where the perceived quality of service
is actually a function of the mean delay evaluated using a M/M/1 queue. Finally we conclude and
give research perspectives in Section 5.

2 PSQA

When we need to determine the quality of a multimedia transmission over the Internet, the most
accurate way to do it is to use a panel of humans and to show them a large enough amount of
sequences. This is a standard procedure for which norms exist (e.g. ITU-T Recommendation P.800),
and which gives the best results, but it is very costly. There are some methods to do an automatic
quantitative assessment, that is, without using subjective tests, for audio flows, but they suffer from
either the accuracy or efficiency points of view. As an alternative, the Pseudo-Subjective Quality
Assessment (PSQA) technology has been recently developed. It allows to automatically quantify the
quality of a video or audio communication over a packet network, as perceived by the user.

The PSQA technique is accurate, as it correlates well with the values given by panels of human
observers, and it can work, if necessary, in real time. It has been tested on video [7] and audio [9]
flows. It can be applied in many areas, for instance, for the analysis of the impact of different factors
on quality, or for performance evaluation using standard models. For a global presentation of PSQA
with a detailed description of the RNN tool, see [8] and the references therein. For the origins of
RNN, see for instance [2], [3].

PSQA is based on learning, in a specific way, how human observers quantify the quality of a
flow under standardized experimental conditions. The learning process consists of training a RNN
to capture the relation between a set of factors having an a priori strong impact on the perceived
quality and the latter. Let us briefly recall the structure of the RNN tool. As many other neural
learning applications, PSQA is generally implemented with a 3-layer feedforward RNN. Such a
network can be seen as a parametric function ν() mapping a vector of size I + J , denoted here
(~C, ~N) = (C1, · · · , CI , N1, · · · , NJ), into a real number. Let us denote by vector ~W the function’s
parameters. The input variables C1, · · · , CI are related to the network connection, or to the codec
used (example: the bit rate), and the variables N1, · · · , NJ correspond to the network state (example:
the loss rate). The value of the function is the quality of the audio or video connection. The function’s
parameters are the weights in the neural network.

As a neural network, our RNN has three layers, the input one with I + J variables, the hidden
one with H units, and the output layer with a single node. The mapping can be explicitly written as
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is the activity rate of hidden neuron h. The strictly positive numbers ro, rh for h = 1..H , ri for
i = 1..I and rj for j = 1..J are fixed. They correspond to the firing rates of the neurons in the
network (respectively, for the output one, the hidden nodes, and the I + J input ones). The weights
are the variables tuned during the learning process. We denote by w+

uv (resp. by w−
uv) the weight

corresponding to an exiting (resp. inhibiting) signal going from neuron u to neuron v (observe that
both numbers w+

uv and w−
uv are ≥ 0). For the interpretation and the dynamics of a RNN see the cited

references above. For our purposes here, we can just see it as a rational parametric function. Learning



will thus consist of finding appropriate values of the weights capturing the mapping from (~c(k), ~n(k))
to the real number q(k) where q(k) is the quality given by a panel of human observers to some audio
or video sequence (depending on the application) when the source parameters had the values present
in ~c(k) and the parameters characterizing the network had the values in vector ~n(k), for k = 1..K.

An important property of the PSQA metric is that it provides us with a closed-form expression
for the perceived quality. Moreover, it has been shown that the perceived quality can be estimated
reasonably well with a very simple RNN, for which the quality expression is also very simple. We
can then fix some of the input variables and get a very simple (and quite accurate) expression of
quality as a function of one or two of the most important ones.

3 PRICING MODEL

The pricing model we consider is taken from [4, 6]. Basically, we focus on two types of traffic: voice
(indexed by v) and data (indexed by d), and priority queuing at a bottleneck modelled by a queue.
Each voice (resp. data) user is assumed to send packets at rate λv (resp. λd). We assume that there
are two classes of service, with class-1 being served with preemptive priority with respect to class-2,
and such that the per-packet price p1 of class-1 is larger than p2, the price for class-2, that is p1 > p2.
We investigate two strategies: the case of dedicated classes where voice users (resp. data) are forced
to go to class-1 (resp. class-2), and the case of open classes where users can choose between service
classes. We assume that there is an infinite population of potential customers that join the network as
long as their utility exceeds the price for service.

As a consequence, there is a game played at the customer level on sending or not traffic, doing
so if their utility is positive and leaving it otherwise, but analyzed at the class level since it may
lead to an equilibrium over the number of customers of each type in each class. See [4, 5] for
extensive discussions on this topic. In those papers, the utility function is chosen arbitrarily and
depends on the mean delay Di experienced in class-i (= 1, 2) by ud(Di) = 1/Dαd

i for data users and
uv(Di) = 1/Dαv

i for voice users. In order to express the preference of voice users for small delays,
αv > αd. This presents a main drawback, namely the fact that we are using arbitrary functions 1/xα

j ,
j ∈ {d, v}, for the utility.

In this paper, we aim at being both more general and more precise, using explicitly the approx-
imation of perceived quality provided by the PSQA approach. Moreover, we do not use arbitrary
utility functions ud() and uv(), but rather root our choice on practical observations:

• voice users are interested in obtaining at least a basic quality level (in terms of voice clarity,
absence of artefacts, etc.) which is defined mainly by the network conditions. Therefore, we
consider a stair-step utility function of general form

fv(Q) =
K∑

k=1

ak1[hk−1≤Q<hk]

where some quality level Q between hk−1 and hk yields a willingness to pay ak. We have
0 = h0 < h1 < · · · < hK and a1 < a2 < · · · < aK . The thresholds hk can come from
well-defined points in, say, MOS ranges, and the prices ak are assumed to come from extensive
testing with real users.

• Concerning data users, their willingness to pay for a given quality Q can be determined by
tests through an RNN similarly to what is done for the quality with respect to performance
parameters. Using the simplest 2-layers topology for the RNN, we obtain an utility function
having the form

fd(Q) =
Q + αd

βdQ + γd

for some real numbers αd, βd, γd.



The above setting allows for a numerical analysis of the equilibrium point (N∗
1,d, N

∗
1,v, N

∗
2,d, N

∗
2,v)

for a given set of prices, where ∀i ∈ {1, 2}, j ∈ {d, v}, N∗
i,j is the equilibrium number of type-j

customers using class-i, as well as, in a second step, the prices optimizing the network revenue

R(p1, p2) =
∑

i∈{1,2}

∑
j∈{v,d}

λjN
∗
i,jpi.

4 MATHEMATICAL ANALYSIS IN A SIMPLE CASE

Let us illustrate more in deep our model in a particular simple case. We consider the typical situation
where the bottleneck is modelled by an M/M/1 queue with service rate µ. In order to derive analytical
results while keeping somehow close to the previous published work, and for comparison purposes,
we limit ourselves to the case where the perceived quality is a function of mean delay only. We thus
have for a given delay D and ∀j ∈ {v, d}

Qj =
D + dj

bjD + cj

.

Note that for data users, combining the two rational functions, we still obtain a rational function of
form fd(D) = (D + d′d)/(b

′
dD + c′d) (we abusively use the same notation fv and fd in terms of D

instead of Q).

4.1 Case of dedicated classes
Focus on the case of dedicated classes (N1,d = N2,v = 0), where voice packets, more sensitive to
delay, are forced to class-1 (the higher priority class) and while data uses class-2. Define Nv = N1,v

and Nd = N2,d. If there are Nv voice customers in the queue, class-1 delay is given by

D1 =
1

µ−Nvλv

.

Voice users enter as long as fv(D1) ≥ p1. fv(D1) is a decreasing function of Nv. Let k be the smallest
integer such that ak ≥ p1 (if p1 > aK then no voice customer enters the network). The population
cardinality Nv will increase up to the highest value N∗

v such that we still have fv(D1) ≥ p1. This
gives Qv = hk−1, that is D1 = (µ− λvN

∗
v )−1 = Q−1
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Similarly, data users enter class-2 traffic as long as fd(D2) ≥ p2. Using classical queuing results,

D2 =
µ

(µ− λvN∗
v )(µ− λvN∗

v − λdNd)
,

N∗
v being fixed from previous computation. Note that fd(D2) is strictly decreasing in Nd and con-

tinuous. Thus, there is a unique equilibrium point N∗
d . If for Nd = 0, fd(D2) ≤ p2, i.e., if

µ(µ − λvN
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d is
such that fd(D2) = p2, i.e., D2 = f−1

d (p2) = (c′dp2 − d′d)/(1− p2b
′
d), or more explicitely:
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• if p1 > aK , i.e. if N∗
v = 0, then

N∗
d =

1

λd

(
µ− 1− p2b

′
d

c′dp2 − d′d

)
.

The network revenue is RD(p1, p2) = λvN
∗
v p1 + λdN

∗
dp2. The subscript D denotes the dedicated

classes situation. A numerical characterization of prices optimizing the revenue can be processed
as follows. We first find the optimal value of low priority access price p2, for a given value of the
high priority price p1, and consequently, for a fixed hk−1. The revenue of the system depends on p2

through

RD(p2) = p1

(
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)
+ p2

(
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.

Obtaining the optimal p2 for a given p1 is simple from a numerical point of view (p2 ≥ 0). The
optimisation is then reduced to the parameter p1. Though, ∀k, for each p1 in the interval (ak−1, ak),
demand is fixed. A discrete optimization can then be carried out over p1 ∈ {0} ∪ {a1, · · · , aK}.

4.2 Case of open classes
The case of open classes can be analyzed in a similar way. Consider first class-1 independently of
class-2 (since the former has a strict and preemptive priority over the latter). Let N1,d and N1,v be the
number of voice and data users in competition for this class of traffic.

• Voice users enter the network as soon as uv(D1) > p1 with D1 = (µ − λvN1,v + λdN1,d)
−1.

Let again k be the smallest integer such that ak ≥ p1 (if p1 > aK , i.e. N∗
v = 0). For fixed N1,d,

N1,v will increase up to D1 = (µ− λvN1,v + λdN1,d)
−1 = Q−1

v (hk−1), i.e.

λvN1,v + λdN1,d = µ− 1

Q−1
v (hk−1)

.

• Similarly in the case of data users, for fixed N1,v, N1,d will increase up to ud(D1) = p1, leading
to

λvN1,v + λdN1,d = µ− 1− p1b
′
d

c′dp1 − d′d
.

Therefore, following the same principles as in [5], if µ−Q−1
v (hk−1) < µ− (1− p1b

′
d)/(c

′
dp1 − d′d),

the couple (N1,v, N1,d) will increase up to uv − p1 = 0, while ud− p1 will still be positive. Thus N1,d

will increase, while N1,v will decrease down to 0 (because of a negative utility). N1,d will continue
to increase up to the value such that ud − p1 = 0, where uv − p1 < 0, deterring voice users from
entering. This leads to the following equilibrium point:(

N∗
1,v = 0, N∗

1,d =
1

λd
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µ− 1− b′dp1

c′dp1 − d′d

))
.

In a symmetric way, if µ − Q−1
v (hk−1) > µ − (1 − p1b

′
d)/(c

′
dp1 − d′d), the equilibrium will be

(N∗
1,v = N∗

v , N∗
1,d = 0) with N∗

v the above value in the case of dedicated classes.
As a consequence, there will always be only one type of traffic in class-1, data if µ−Q−1

v (hk−1) <
µ− (1− p1b

′
d)/(c

′
dp1 − d′d), and voice otherwise.

The number of users being fixed for class-1, the analysis can be repeated for class-2. Again, the
numbers N2,v and N2,d of customers in class-2 increase up to uv = 0 i.e., D2 = Q−1

v (hl−1) with l be
the smallest integer such that al ≥ p2 (if p2 > aK′ , with K ′ the quality level for the first infinitesimal



class-2 user when class-1 fixed as above, then no voice customer uses class-2), or ud = 0, i.e.,
D2 = (c′dp2 − d′d)/(1− b′dp2), that is respectively

λdN2,d + λvN2,v = µ− λ1N
∗
1 −

µ

(µ− λ1N∗
1 )Q−1

v (hl−1)

or

λdN2,d + λvN2,v = µ− λ1N
∗
1 −

µ(1− b′dp2)

(µ− λ1N∗
1 )(c′dp2 − d′d)

,

where λ1N
∗
1 is the total arrival rate in class-1 (depending on the value of p1). So, following the same

line of argument than for class-1, there will be only one type of traffic in class-2, data if Q−1
v (hl−1) <

(c′dp2 − d′d)/(1 − b′dp2), with N∗
2,d = λ−1

d [µ − λ1N
∗
1 − µ(1 − b′dp2)]/(µ − λ1N

∗
1 )/(c′dp2 − d′d) and

voice otherwise, with N∗
2,v = λ−1

v [µ− λ1N
∗
1 − µ/(µ− λ1N

∗
1 )/Q−1

v (hl−1)].
A numerical investigation of prices maximizing the revenue can be carried out similarly to the

case of dedicated classes, but is not included here for sake of space.

5 CONCLUSIONS AND PERSPECTIVES

This paper aims at proposing the combination of pricing analysis with the PSQA technique which is
able to automatically quantifying the perceived quality of a video, audio or multimedia communica-
tion through a packet network. The goal is to avoid the use of somehow arbitrary utility functions
taking into account the way users see the benefit got from the transport of their packets. We included
the PSQA evaluation of perceived quality into a model representing two typical and important types
of traffic, voice and data, having very different quality constraints. The approach was illustrated
using a simple model where packets are handled using two classes with priorities.

This work can be extended to more complex situation using numerical procedures, in particular
to models where the quality function depends on more than one parameter. The methodology is the
same, but the complexity of the models precludes any attempt of obtaining analytical results. Another
aspect of this paper needing more development is the experimental one, and specifically the way the
necessary input data will be effectively produced. This will be the object of future efforts.
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