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Abstract. In this paper, we present an analysis of the impact of using
media–dependent Forward Error Correction (FEC) in VoIP flows over
the Internet. This error correction mechanism consists of piggy-backing
a compressed copy of the contents of packet n in packet n + i (i being
variable), so as to mitigate the effect of network losses on the quality
of the conversation. To evaluate the impact of this technique on the
perceived quality, we propose a simple network model, and study different
scenarios to see how the increase in load produced by FEC affects the
network state. We then use a pseudo–subjective quality evaluation tool
that we have recently developed in order to assess the effects of FEC
and the affected network conditions on the quality as perceived by the
end–user.

1 Introduction

In recent years, the growth of the Internet has spawned a whole new generation
of networked applications, such as VoIP, videoconferencing, video on demand,
music streaming, etc. which have very specific, and stringent, requirements in
terms of network QoS. In this paper we will focus on VoIP technology, which has
some particularities with respect to other real–time applications, and it is one of
the most widely deployed to date. The current Internet infrastructure was not
designed with these kinds of applications in mind, so multimedia applications’
quality is very dependent on the capacity, load and topology of the networks
involved, as QoS provisioning mechanisms are not widely deployed. Therefore,
it becomes necessary to develop mechanisms which allow to overcome the tech-
nical deficiencies presented by current networks when dealing with real–time
applications.

Voice–over–IP applications tend to be sensitive to packet losses and end–
to–end delay and jitter. In this paper we will concentrate on the effect of FEC
on packet loss, and the effect of both on the perceived quality. While it has
been shown [1] that delay and jitter have a significant impact on the perceived
quality, we will focus on one–way flows, whose quality is largely dominated (at
the network level) by the packet loss process found in the network. The effects of
FEC on interactive (two–way) VoIP applications is the subject of future studies.
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In order to assess the variations in perceived quality due to the use of FEC,
we will use a technique we have recently developed [2,3]. The idea is to train an
appropriate tool (a Random Neural Network, or RNN) to behave like a “typical”
human evaluating the streams. This is not done by using biological models of
perception organs but by identifying an appropriate set of input variables related
to the source and to the network, which affect the quality, and to teach the RNN
the relationships between these variables and the perceived quality. One of the
main characteristics of this approach is that the result is extremely accurate (as
it matches very well the result obtained by asking a team of humans to evaluate
the streams). In [4], we applied this method to analyze the behavior of audio
communications on IP networks, with very good results after comparison with
real human evaluations.

The rest of the paper is organized as follows. Section 2 presents the tool we
used to assess the perceived quality of the flows. Section 3 presents the network
model we used for our analysis, and the effects of adding FEC to the audio
traffic. In Section 4, we present our analysis of the effects of FEC on the quality
of the flows. Finally, Section 5 presents our conclusions.

2 Assessing the Perceived Quality

Correctly assessing the perceived quality of a speech stream is not an easy task.
As quality is, in this context, a very subjective concept, the best way to evaluate
it is to have real people do the assessment. There exist standard methods for
conducting subjective quality evaluations, such as the ITU-P.800 [5] recommen-
dation for telephony. The main problem with subjective evaluations is that they
are very expensive (in terms of both time and manpower) to carry out, which
makes them hard to repeat often. And, of course, they cannot be a part of an
automatic process.

Given that subjective assessment is expensive and impractical, a significant
research effort has been done in order to obtain similar evaluations by objective
methods, i.e., algorithms and formulas that measure, in a certain way, the qual-
ity of a stream. The most commonly used objective measures for speech/audio
are Signal-to-Noise Ratio (SNR), Segmental SNR (SNRseg), Perceptual Speech
Quality Measure (PSQM) [6], Measuring Normalizing Blocks (MNB) [7], ITU
E–model [8], Enhanced Modified Bark Spectral Distortion (EMBSD) [9], Per-
ceptual Analysis Measurement System (PAMS) [10] and PSQM+ [11]. These
methods have three main drawbacks: (i) they generally don’t correlate well with
human perception [12,8]; (ii) virtually all of them (one exception is the E-model)
are comparing techniques between the original and the received stream (so they
need the former to perform the evaluation, which precludes their use in a live,
real–time networking context), and (iii) they generally don’t take into account
network parameters. Points (ii) and (iii) are due to the fact that they have been
mainly designed for analyzing the effect of coding on the streams’ quality.

The method used here [2,3] is a hybrid between subjective and objective
evaluation. The idea is to have several distorted samples evaluated subjectively,
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and then use the results of this evaluation to teach a RNN the relation between
the parameters that cause the distortion and the perceived quality. In order for
it to work, we need to consider a set of P parameters (selected a priori) which
may have an effect on the perceived quality. For example, we can select the codec
used, the packet loss rate of the network, the end–to–end delay and/or jitter, etc.
Let this set be P = {π1, . . . , πP }. Once these quality–affecting parameters are
defined, it is necessary to choose a set of representative values for each πi, with
minimal value πmin and maximal value πmax, according to the conditions under
which we expect the system to work. Let {pi1, · · · , piHi} be this set of values, with
πmin = pi1 and πmax = piHi

. The number of values to choose for each parameter
depends on the size of the chosen interval, and on the desired precision. For
example, if we consider the packet loss rate as one of the parameters, and if we
expect its values to range mainly from 0% to 5%, we could use 0, 1, 2, 5 and
perhaps also 10% as the selected values. In this context, we call configuration a
set with the form γ = {v1, . . . , vP }, where vi is one of the chosen values for pi.

The total number of possible configurations (that is, the number
∏P

i=1 Hi)
is usually very large. For this reason, the next step is to select a subset of the
possible configurations to be subjectively evaluated. This selection may be done
randomly, but it is important to cover the points near the boundaries of the
configuration space. It is also advisable not to use a uniform distribution, but
to sample more points in the regions near the configurations which are most
likely to happen during normal use. Once the configurations have been chosen,
we need to generate a set of “distorted samples”, that is, samples resulting
from the transmission of the original media over the network under the different
configurations. For this, we use a testbed, or network simulator.

Formally, we must select a set of M media samples (σm), m = 1, · · · , M ,
for instance, M short pieces of audio (subjective testing standards advise to use
sequences having an average 10 sec length -following [5], for instance). We also
need a set of S configurations denoted by {γ1, · · · , γS} where γs = (vs1, · · · , vsP ),
vsp being the value of parameter πp in configuration γs. From each sample σi,
we build a set {σi1, · · · , σiS} of samples that have encountered varied conditions
when transmitted over the network: sequence σis is the sequence that arrived at
the receiver when the sender sent σi through the source-network system where
the P chosen parameters had the values of configuration γs.

Once the distorted samples are generated, a subjective test [5] is carried
out on each received piece σis. After a statistical screening of the answers (to
eliminate “bad” observers), the sequence σis receives the value µis (often, this is
a Mean Opinion Score, or MOS), the average of the values given to it by the set
of observers. The idea is then to associate each configuration γs with the value
µs = (1/M)

∑M
m=1 µms.

At this step we have a set of S configurations γ1, . . . , γS , and we associate
µs with configuration γs. We randomly choose S1 configurations among the S
available. These, together with their values, constitute the “Training Database”.
The remaining S2 = S −S1 configurations and their respective values constitute



34 G. Rubino and M. Varela

the “Validation Database”, reserved for further (and critical) use in the last step
of the process.

The next step is to train a specific statistical learning tool (a RNN) to
learn the mapping between configurations and values as defined by the Training
Database. Assume that the selected parameters have values scaled into [0,1] and
the same with quality. Once the tool has “captured” the mapping, that is, once
the tool is trained, we have a function f() from [0, 1]P into [0, 1] mapping now any
possible value of the (scaled) parameters into the (also scaled) quality metric.
The last step is the validation phase: we compare the value given by f() at the
point corresponding to each configuration γs in the Validation Database to µs; if
they are close enough for all of them, the RNN is validated (in Neural Network
Theory, we say that the tool generalizes well). In fact, the results produced by
the RNN are generally closer to the MOS than that of the human subjects (that
is, the error is less than the average deviation between human evaluations). As
the RNN generalizes well, it suffices to train it with a small (but well chosen)
part of the configuration space, and it will be able to produce good assessments
for any configuration in that space. The choice of the RNN as an approximator is
not arbitrary. We have experimented with other tools, namely Artificial Neural
Networks, and Bayesian classifiers, and found that RNN are more performant in
the context considered. ANN exhibited some performance problems due to over-
training, which we did not find when using RNN. As for the Bayesian classifier,
we found that while it worked, it did so quite roughly, with much less precision
than RNN. Besides, it is only able to provide discrete quality scores, while the
NN approach allows for a finer view of the quality function.

For this study, we will use a RNN trained with results from a subjective
tests campaign carried out with 17 subjects. The subjects were presented 115
sets of speech samples that had been generated using the Robust Audio Tool
(RAT [13]), corresponding to different network and coding configurations. A
MOS test was performed and the results screened as per [5]. About 90 of the
results obtained were used to train the RNN, and the remaining ones were used
to validate it. The parameters considered for our experiment are listed on table 1,
and are described below.

Codec – the primary codec (16 bit linear PCM, and GSM),
FEC – the secondary codec (GSM), if any,

Table 1. Network and encoding parameters and values used

Parameter Values

Loss rate 0% . . . 15%
Mean loss burst size 1 . . . 2.5
Codec PCM Linear 16 bits, GSM
FEC ON(GSM)/OFF
FEC offset 1 . . . 3
Packetization interval 20, 40, and 80ms
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FEC offset – the offset, in packets, of the redundant data (we used offsets of
1 and 3 packets for the Forward Error Correction (FEC) scheme presented
in [14,15].

Packetization Interval (PI) – the length (in milliseconds) of audio contained
in each packet (we considered packets containing 20, 40 and 80ms).

Packet loss rate – the percentage of lost packets (2, 7, 10 and 15%).
Mean loss burst size – the average size of packet loss bursts (1, 1.7 and 2.5

packets); we consider this parameter to have a finer view on the packet loss
process than the one reduced to the packet loss rate only.

So, in order to obtain an estimation of the perceived quality, all that is needed
is to feed the trained RNN with values for those parameters, and it will output
a MOS estimation, very close to the actual MOS.

3 The Network Model

The tool described in the last section gives us a way to explore the perceived
quality as a function of the 6 selected parameters. For instance, this allows to
plot MOS against, say, packet loss rate in different cases (parameterized by the
5 remaining parameters), etc. For performance evaluation purposes, we want
to know which is the impact on quality of typical traffic parameters (such as
throughputs) and the parameters related to the dimensions (such as windows,
buffer sizes, etc.). This gap is here bridged by adding a network model.

In this paper we will consider a very simple network model, much like the
one presented in [16,17]. It consists of an M/M/1/H queue which represents the
bottleneck router in the network path considered. In spite of its simplicity, this
model will allow us to capture the way FEC affects perceived quality. Moreover,
it appears to be quite robust (see the comments in 3.3). We will concern ourselves
with two classes of packets, namely audio packets and background traffic. Audio
packets can have FEC or not, but we will consider that if FEC is on, then all
flows are using it. Our router will have a drop–tail buffer policy, which is common
in the current Internet.

3.1 Transmission Without FEC

First, consider the case of audio without FEC. We will take the standard en-
vironment in the M/M/1/H case: Poisson arrivals, exponential services, and
the usual independence assumptions. The arrival rates of class i units is λi pps
(packets per second) and the link has a transmission capacity of c bps. The
average packet length for class i packets is Bi bits. In order to be able to use
analytical expressions, we consider in the model the global average length of the
packets sharing the link, B, given by B = α1B1 + α2B2, where αi = λi/λ, with
λ = λ1 + λ2. The service rate of the link in pps is then µ = c/B.

Let us assume that the buffer associated with the link has capacity equal
to N bits. Then, in packets, its capacity will be taken equal to H = N/B. To
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simplify the analysis, we will use the expressions for the performance metrics of
the M/M/1/H models even if H is not an integer; this does not significantly
change the results and the exposition is considerably more clear.

If we denote � = λ/µ, then the packet loss probability p is

p =
1 − �

1 − �H+1 �H

(assuming � �= 1). We also need to compute the mean size of loss bursts for
audio packets, since the correlation between losses influences the speech quality.
Here, we must discuss different possible definitions for the concept of loss burst,
because of the multi-class context. To this end, let us adopt the following code
for the examples we will use in the discussion: a chunk of the arrival stream at
the link will be denoted by “. . . , x, y, z, . . . ” where symbols x, y, z, . . . are equal
to i if a class-i packet arrives and is accepted (the queue was not full) and to i if
the arrival is a class-i one and it is rejected (because there was no room for it).

Assume a packet of class 1 arrives at a full queue and is lost, and assume
that the previous class 1 packet was not lost. Then, a burst of class 1 losses
starts. Strictly speaking, the burst is composed of a set of consecutive audio
packets all lost, whatever happens to the class-2 packets arriving between them.
For instance, in the path “. . . , 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, . . . ” there is a class 1
burst with loss burst size size LBS = 3. If we use this definition of burst, when
audio packets are a small fraction of the total offered traffic, this definition can
exaggerate the effective impact of correlation. Even in the case of many audio
packets in the global arrival process, allowing the class-2 packets to merge inside
audio loss bursts can be excessive. On the other extreme, we can define an
audio loss burst as a consecutive set of class-1 arrivals finding the buffer full,
without class-2 packets between them. In the path shown before, if we consider
this burst definition, there is a first burst of class-2 losses with size 2, then
a second one composed of only one packet. Consider now the piece of path
“. . . , 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, . . . ”. An intermediate definition consists
of considering that we accept class-2 packets inside the same audio burst only
if they are also lost (because this corresponds basically to the same congestion
period). In the last example, this means that we have a loss burst with size 4.
We will keep this last definition for our analysis.

Let us denote by LBS the loss burst size (recall that we focus only on class 1
units). The probability that a burst has size strictly greater than n is the proba-
bility that, after a class 1 loss, the following n class-1 arrivals are losses, accepting
between them class-2 losses in any number. This means

Pr(LBS > n) = pn,

where

p =
∑

k≥0

(
λ2

λ1 + λ2 + µ

)k
λ1

λ1 + λ2 + µ
=

λ1

λ1 + µ
.

The last relationship comes from the fact that we allow any number of class 2
units to arrive as far as their are lost, between two class 1 losses (that is, while
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the burst is not finished, no departure from the queue is allowed). Using the
value of p, we have

E(LBS) =
∑

n≥0

Pr(LBS > n) =
∑

n≥0

(
λ1

λ1 + µ

)n

= 1 +
λ1

µ
.

3.2 Transmission With FEC

If FEC is used, each audio packet has supplementary data, and we denote this
overhead by r. If B′ is the mean audio packet length when FEC is used, then
B′

1 = B1(1 + r). The rest of the parameters are computed as before. We have
B′ = α1B

′
1 + α2B2, µ′ = c/B′, H ′ = N/B′ and �′ = λ/µ′. This leads to the

corresponding expression for the loss probability p′ = �′H′
(1 − �′)/(1 − �′H′+1)

and E(LBS′) = 1 + λ1/µ′.

3.3 About the Model Robustness

The simplicity of the classical M/M/1/H single class model hides its capacity a
capture the dynamics of the system. We also explored the more directly multi-
class M/M/1/H FIFO queue where the service rate is µi for class-i packets. This
model can be easily numerically analyzed by writing and solving the associated
equilibrium equations.

Let us denote

qi = Pr(in steady state, the queue is saturated and a class-i packet is being
transmitted).

Then, using the previously definition of class-k loss bursts, their average length
E(LBSk) is derived exactly as before. First, conditioned on the class of the packet
being transmitted,

E(LBSk | a class-i packet is being transmitted) = 1 + λk/µi.

Then, given the low loss rate considered, we average the average loss burst length
for class-k as

E(LBSk) =
∑

i qi(1 + λk/µi)∑
j qj

.

We explored the perceived quality as described before within this multi-class
model and the numerical results we obtained were very similar to those presented
in next section.

4 The Impact of FEC on VoIP Flows

The main idea of using FEC is that as the real–time requirements of VoIP make
it impossible to retransmit lost packets, it is possible to mitigate the effect of
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the losses by transmitting the information contained in each packet more than
once. To this end, we send one (maybe more) copy of packet n’s contents in
packet n + i (n + i + 1, and so on if several copies are sent), i being variable.
The extra copies are normally compressed at a lower bit rate, so as to minimize
the increase in bandwidth usage. When a packet is lost, if the packet containing
the redundant copy of the lost one arrives in a timely fashion, the receiver can
use said copy to recover from the loss, in a way that minimizes the perceived
quality degradation. The variability of i is due to the bursty nature of packet
losses on IP networks [18,19], and it allows to improve the performance of the
FEC scheme described above by avoiding the loss of all copies of a given voice
packet in the same loss burst. However, i should remain as close to 1 as possible,
in order to minimize the increase of the end–to–end delay, which is known to
degrade the quality of a two–way VoIP session.

In our study, we focus on the perceived audio quality, and so it is sufficient
to consider only one–way flows. Therefore, we didn’t consider the effects of FEC
on the end–to–end delay.

In order to assess the impact on FEC at the network loss level, we must
consider two factors:

– the amount of redundancy introduced by the use of FEC (and therefore the
increase in packet size for the flows using FEC),

– the proportion of flows using FEC, which allows us to derive the new network
load.

While the increase in size is likely to be small, more or less equal for different
applications, and certainly bounded by a factor of 1, the amount of flows using
FEC is very hard to determine. Estimations of the number of VoIP flows on the
Internet are not readily available in the literature, but there are some estima-
tions [20] that say that UDP traffic only accounts for about 15 to 20% of the
total network traffic. Even then, VoIP is probably still a modest fraction of that
UDP traffic (some studies [21] suggest that about 6% of traffic corresponds to
streaming applications). However, being that VoIP applications have a growing
user base, it seems reasonable that in some time they may account for a higher
fraction of the total Internet traffic.

We studied different scenarios, with increasing volumes of VoIP traffic in or-
der to assess the impact of FEC in the quality perceived by the end–user. For sim-
plicity’s sake, we assumed that if FEC is in use, then all VoIP flows are using it.

For our example, we’ll consider an T3–type line which runs at 45Mbps (ac-
tual speeds are not really relevant, since we will concern ourselves with the load
of the network – numbers are used to better set the example). In practice, buffer
space in core routers is not limited by physical memory, but rather by the admin-
istrators, who may wish to minimize delays (while this implies that the loss rate
is higher than it could be, it is important to make TCP flows behave properly).
This time is normally limited to a few milliseconds [22]. We will use a value of
200ms (which requires a buffer space of N = 45Mbps ∗ 0.2s = 9Mbits, or about
1965 packets of 600B), which is on par with current practices.
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Table 2. Packet size distribution

Size (Bytes) Probability

40 50
512 0.25
1500 0.24
9180 0.01

Some studies [23] show that an important percentage (about 60%) of packets
have a size of about 44B, and that about 50% of the volume of bytes transferred
is transferred on 1500B or higher packet sizes. Table 2 shows the distribution
we chose for our background traffic packet sizes, which yields an average packet
size B2 of about 600B.

We considered that network load varies between 0.5 and 1.15. Smaller values
have no practical interest, since in the model we used, they result in negligible
loss rates, and higher load values result in loss rates above 15%, which typically
yield unacceptable quality levels.

As for the fraction of VoIP traffic, we studied different values, between 5%
and 50% of the total packet count. Granted, the higher values are currently
unrealistic, but they may make sense in a near future if more telephony providers
move their services toward IP platforms, and other VoIP applications gain more
acceptance.

We chose to use PCM audio with GSM encoding for FEC, and an offset
of one packet for the redundant data. This is a bit pessimistic, since sample–
based codecs are not very efficient for network transmission, but it allows us to
get a worst–case scenario of sorts (since increasing the fraction of audio traffic
does indeed increase network load). In this case, the increase in packet size is
of about 10% when using FEC, which gives payloads of 353B, against 320B of
PCM–only traffic for 20ms packets. We also tried GSM/GSM, which results in
a much smaller packet size (66B and 33B with and without FEC respectively),
but found that the results are qualitatively similar to those of PCM, and so we
will discuss only the PCM ones.

4.1 Assessing the Impact of FEC on the Perceived VoIP Quality

We present our results as a series of curves, plotting the estimated MOS values
against network load, and for different values of the proportion of voice packets.

As can be seen in the curves in Figure 1, using FEC is beneficial for the
perceived quality in all the conditions considered. It can be seen that when the
proportion of voice traffic becomes important (> 30%) the performance of the
FEC protection decreases. We believe that this is related to the fact that a
higher proportion of voice packets implies a higher mean loss burst size (which
is still smaller than 2 in our model for the conditions considered), and being
that we chose an offset of 1 packet for the FEC, it is logical to see a slight
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Fig. 1. MOS as a function of network load for different fractions of voice traffic, with
and without FEC (20ms packets)
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decrease in performance.We did not find, however, a negative impact of FEC
on the perceived quality, as predicted in [16,17]. Even when most of the packets
carry voice with FEC, we found that it is better to use FEC than not to use
it. It might be that for extremely high values of the network load, this will not
hold, but in that case quality will be be already well below acceptable values,
FEC or no FEC, so it doesn’t really matter.

The second strong fact coming from these numerical values is that the qual-
itative behaviour of perceived quality when load increases is basically the same
in all cases, with a significant degradation when load approaches 1 and beyond.

We also found that using a larger larger packetization interval can help im-
prove the perceived quality. We tried doubling the packet size, obtaining 40ms
packets (20ms and 40ms packets are commonly used in telephony applications),
and obtained a slight increase in quality even for higher proportions of audio
packets (25% of audio packets, which corresponds to the same number of flows
of a 50%–20ms audio packet proportion). This can be seen in Figure 2. While
increasing the packetization interval is beneficial in one–way streams, it should
be studied whether the higher delay values that this creates do not counter these
benefits.

Fig. 2. MOS as a function of network load for 25% of voice traffic, with and without
FEC (40ms packets)

5 Conclusions

In this paper we analyze the effect of media–dependent FEC on one–way speech
streams. To this end, we studied the effects of the increase in network load
generated by adding FEC to voice streams, using a simple queueing model to
represent the bottleneck router, in a similar fashion as in[16,17].

In order to estimate the voice quality perceived by the end–user, we used a
method we have recently proposed, based on Random Neural Networks trained
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with data obtained from subjective quality assessments. We fed the RNN with
coding parameters and with packet loss parameters derived from the network
model, and obtained MOS estimates for each configuration.

We considered a range of network loads that yielded reasonable loss rates,
and several values for the fraction of packets corresponding to speech flows. The
results obtained indicate that, as expected, the use of FEC is always beneficial
to the perceived quality, provided that the network parameters stay within
reasonable ranges. Our approach allows to provide actual quantitative estimates
of this gain, as a function of different parameters. In the paper we focused
on the network load, but similar analysis can be done to explore many other
interesting aspects, such as delay/jitter for interactive flows.

One of the strong points of this approach is the coupling of an accurate tech-
nique to assess perceived quality (avoiding the use of abstract “utility functions”)
with a model of the network allowing to obtain information about the loss pro-
cess. If for some reason the model used yesterday is not considered appropriate
today, one can move to some other (possibly more detailed) representation of
the bottleneck (or perhaps to a tandem queueing network corresponding to the
whole path followed by the packets), and use the same approach to finally map
traffic parameters to final, end–to–end quality as perceived by the final user.
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