A new approach for the prediction of end-to-end performance of multimedia streams

Gerardo Rubino Irisa - INRIA / Rennes Martin Varela Irisa - INRIA / Rennes

Campus universitaire de Beaulieu Campus universitaire de Beaulieu
35042 Rennes, France 35042 Rennes, France
rubino@irisa.fr mvarela@irisa.fr
Abstract analyze the coding effect on the sequences (not the network im-

pact on them). Unfortunately, when the sequences have been
This paper proposes a new and accurate way of predicting transmitted over a network, the results given by objective mea-
the end-to-end performance of a multimedia stream. It con-sures correlate poorly with the subjective ones (see next section
sists of coupling an approach we have previously developedfor some references).
which is able to capture very precisely the way humans assess Tne third approach is the one published in [19, 22]. The idea
an arriving stream, with classical performance evaluation mod- s to train an appropriate tool (a Random Neural Network, or
els. The former approach can automatically quantify the quality pnN) to behave like a “typical” human evaluating the streams.
of the connection as humans would do (using statistical learn-Thjs is not done by using biological models of perception or-
ing tools), considering this quantitative measure of quality as gans put by identifying an appropriate set of input variables re-
a function of measurable parameters of the network and the|ated to the source and to the network, which affect the quality.
source; the latter allows mapping this “ultimate” quality valué  one of the main characteristics of this approach is that the result
to input parameters such as offered traffic or loads, through, for ig extremely accurate (somehow by construction, as it matches
instance, queuing models. In the paper, we also propose a siMyery well the result obtained by asking a team of humans to
plification of the global approach dealing with simple closed gygjyate the streams). In [22], we applied this method to an-
formulas. We illustrate our approach with a simple case study ajyze the behavior of audio communications on IP networks,
of unidirectional VoIP performance. with very good results after comparison with real human evalu-
ations. In the next section we provide a detailed description of
this approach, but let us point out here a useful way of look-
1. Introduction ing at |t The method consists of a procedure allowing to build
a function@ = f(x1,--- ,xp) Wherezy,--- ,zp are source
In recent years, the growth of the Internet has spawned a@nd network parameters (such as the codec, source bit rate, loss
whole new generation of networked applications, such as VolP, ate, jitter, ...) and? is a measure of quality (such as a Mean
videoconferencing, video on demand, music streaming, etc.Opinion Score, or MOS). The results presented in [19, 22] show
which have very SpeciﬁC, and Stringent, requirements in termsthat if the stream encounters source and network conditions
of network QoS. The current Internet infrastructure was not de-Such that the chosen parameters have valyes - , zp, then
signed with these kinds of applications in mind, so multimedia .f(z1, -+ ,zp) will be very close to the quality value an aver-
applications’ quality is very dependent on the capacity, load and@ge human would give to it.
topology of the networks involved, as QoS provisioning mech- ~ The main contribution of this paper is the coupling of this
anisms are not widely deployed. Therefore, it becomes necestechnique with standard performance models in order to pre-
sary to take these new applications into account when designdict the behavior of the systems, typically for dimensioning or
ing a new network. for capacity planning purposes. Let us explain this more in de-
The problem is that it is not easy to accurately assess the pertail. Assume you are in charge of evaluating the performance of
formance of multimedia applications, as the quality perceived some IP network to be deployed in the future, with respect to
by the end user is a very subjective concept. There are currentlysome specific streaming application. You decide to use a very
three ways to perform this assessment. The first one is to put husimple model, for instance, al/ /M /1/W queue (represent-
man observers in front of the streams and to ask them about theiing a whole network by just a queue is a frequent simplifica-
perception of quality; this defines what the ultimate quality is, tion, e.g. [2, 3, 8]). This model should allow you to derive stan-
and it is calledsubjective testinglhe associated procedures are dard performance measures such as the loss probability (assum-
today well understood; many of them have even been standarding the system in equilibrium). The inputs are the arrival rate (or
ized (see next section). The second one is to implement someffered mean traffic), the equivalent transmission ratethat
“distance metric” between the original sample and the one re-the whole network offers to the packets and the maximum num-
ceived; this is calleabjective testinglt has been designed to ber of packets that the network can hold, represented globally



here by the storage capacity of the queue. This implies that instance, to look at its optimal value under some specific con-
these parameters can be estimated from the network characteditions) our method gives you a functiap = f(...,z,...)

istics and from the expected behavior of the traffic. In symbols, as explained before, where among the different input parame-
the loss probability, is given byp;, = 0"V (1—0)/(1—0"*1) tersz is the FEC offset.

with o = A\/u # 1 (if o = 1 thenpy, = 1/(W + 1)). Since A last word about the modeling part of the process. In this pa-
we know that the quality of the stream strongly depends on theper we propose an approach and we chose a very simple model,
losses, computing;, should allow the designer to tune the ap- anM/M/1/W queue, to illustrate it because it is a well known
propriate control variables in order to obtain a loss probabil- model, and it is simple enough to allow us to keep the focus
ity less than some specific threshold. From a practical point ofon the method. However, it should be clear that the model to
view, the problem with this approach is that the user is in fact choose depends on the accuracy you need, the data you have,
sensitive only to his/her perception of the quality, which is a the questions you have to answer, the available computer power
strongly subjective concept. This perceived quality depends onif a computer is needed, etc. For instance, if you have to esti-
many factors other than the loss rate (probably some of themmate the performance of some UDP-based application using a
even not well identified), and this dependency is complex and TCP-friendly control algorithm and you decide to use some spe-
not well understood. The approach we present here is to com<ific model to capture the aspect of the system behavior you are
bine the method proposed in [19] with standard modeling tech-interested in, you have to build yoyi() function in order to
nigues in order to choose, sayandW such thathe perceived  be able to perform the proposed mapping illustrated in (1). If
quality itselfis high enough. your model is accurate (that is, if the quality of yay() func-

Let us say it again in a more formal way. The standard mod-tions is high, then (1) will give you a good estimate of the ulti-
eling approach in usual performance evaluation activities givesmate quality, directly as a function of your data. Coming back
you performance metrics such as loss rates, mean delays, etto the first simple example used here, perhaps you will decide
as functions of available input data or directly controllable pa- to represent your system by a complex Markovian queuing net-
rameters (such as arrival rates, service rates, routing probabilwork having many “low level” input parameters (instead of just
ities, storage capacities, etc.). DenoteihQyrs, ... these data ¢ andW), to be solved only numerically. In that cag) will
variables or parameters.df, zo, ... represent the performance be accessible through a numerical procedure, but again, the re-
metrics, queuing models typically give to you expressions of sult will be an accurate estimation of the quality as seen by the
the formz, = g¢;(v1,10,...). For instance, in the example of end-user of the application, whose efficiency will be essentially
the M /M /1/W model, we could have the loss rate and the av- proportional to the efficiency of the model you use.

erage delay as functions of the loadand the storage capac- The rest of the paper is organized as follows. Section 2

ity W. Our proposal here is to build a function giving to you the presents the quality assessment method used. In section 3, we

quality @ (as perceived by the user) as a function/gfvs, . .. show how to use it together with classical queuing models. Sec-

through tion 3 also presents an example of the results obtained with our
method on one—way VoIP streams. Finally, section 4 presents

Q= flor(vy,va,.. ), g2(vi,ve, ), ). @) our conclusions and future work in this area.
Later in the paper we provide a closed form of such a function
in the case of an audio application (see relation (5)). 2. Pseudo-subjective Quality Assessment

Consider another situation. You need to analyze the effect of
the offset of a FEC (Forward Error Correction) technique such  Correctly assessing the perceived quality of a multime-
as the one proposed in [8] on quality using a model (as, for in-dia stream is not an easy task. As quality is, in this con-
stance, in [2, 8]). What people usually do is to build a model text, a very subjective concept, the best way to evaluate it is to
(some queuing system capturing the behavior of the network),have real people do the assessment. There exist standard meth-
with perhaps an appropriate loss model, and then, to obtain ads for conductingubjectivequality evaluations, such as the
performance metric as a function of specific input parameters.ITU-P.800 [17] recommendation for telephony, or the ITU-R
At this point, someutility functionsare used to take into ac- BT.500-10 [15] for video. The main problem with subjec-
count the way users react. These functions are mappings betive evaluations is that they are very expensive (in terms of both
tween the performance metrics and some abstract concept dime and manpower) to carry out, which makes them hard to re-
quality. Our proposal eliminates the need for these functionspeat often. And, of course, they cannot be a part of an automatic
by providing avalidatedmapping between network parameters process.
(and also source parameters) and perceived quality. Moreover, Given that subjective assessment is expensive and impracti-
recall that our functions can have more than one variable. Forcal, a significant research effort has been done in order to obtain
instance, in the example proposed later in this text, we will pro- similar evaluations bybjectivemethods, i.e., algorithms and
vide a function mapping the load the network memory ca- formulas that measure, in a certain way, the quality of a stream.
pacity W, the offset of the FEC data, the type of codec and the The most commonly used objective measures for speech/audio
packetization interval, into quality, for a voice stream. There- are Signal-to-Noise Ratio (SNR), Segmental SNR (SNRseg),
fore, there is no need for using these auxiliary utility functions: Perceptual Speech Quality Measure (PSQM) [6], Measuring
if your problem is to analyze the effects of the FEC offset (for Normalizing Blocks (MNB) [28], ITU E-model [16], Enhanced



Modified Bark Spectral Distortion (EMBSD) [30], Perceptual age 10 sec length). We also need a se$ @onfigurations de-
Analysis Measurement System (PAMS) [23] and PSQM+ [5]. noted by{~1,--- ,vs} wherevy, = (vs1,--- ,vsp), Usp DEING
For video, some examples are the ITS’ Video Quality Met- the value of parameter, in configurationy,. From each sample
ric (VQM) [4, 27], EPFL's Moving Picture Quality Metric  o;, we build a se{o;;,- -, 0,5} of samples that have encoun-
(MPQM), Color Moving Picture Quality Metric (CMPQM) [25, tered varied conditions when transmitted over the network. That
26], and Normalization Video Fidelity Metric (NVFM) [26]. As s, sequence;, is the sequence that arrived at the receiver when
stated in the Introduction, these quality metrics often provide as-the sender semt; through the source-network system where the
sessments that do not correlate well with human perception, andP chosen parameters had the values of configuration
thus their use as a replacement of subjective tests is limited. Ex- Once the distorted samples are generated, a subjec-
cept for the ITU E—model, all these metrics propose different tive test [15, 17] is carried out on each received piegg
ways to compare the received sampith the original oneThe After statistical processing of the answers, the sequencee-
E—model allows to obtain an approximation of the perceived ceives the value:;, (often, this is aMean Opinion Score
quality as a function of several ambient, coding and network pa-or MOS). The idea is then to associate each configura-
rameters, to be used for network capacity planning. However, agion ~, with the value
stated in [13] and even in its specification [16], its results do not
correlate well with subjective assessments either. 1 U
The method used here [22, 19] is an hybrid between sub- Hs =1 Z Hms-
jective and objective evaluation. The idea is to have several dis-
torted samples evaluated subjectively, and then use the results of At this step we have a set ¢f configurationsy,, ... ,vs.
this evaluation to teach a RNN the relation between the param-Configurations has valueu, associated with it. We randomly
eters that cause the distortion and the perceived quality. In ordeghooseS; configurations among th& available. These, to-
for it to work, we need to consider a set Bfparameters (se-  gether with their values, constitute the “Training Database”. The
lecteda priori) which may have an effect on the perceived qual- remainingS; = S — S; configurations and their respective val-
ity. For example, we can select the codec used, the packet losges constitute the “Validation Database”, reserved for further
rate of the network, the end-to—end delay and/or jitter, etc. Let(and critical) use in the last step of the process.
this set beP = {m,...,7p}. Once thes@uality—affectinga- The next step is to train a statistical learning tool (in our case,
rameters are defined, it is necessary to choose a set of represea-RNN) to learn the mapping between configurations and values
tative values for each;, with minimal valuer,,;, and maximal  as defined by the Training Database. Assume that the selected
valuemnax, according to the conditions under which we expect parameters have values scaled into [0,1] and the same with qual-
the system to work. Lefpi1,--- ,piu, } be this set of values, ity. Once the tool “captured” the mapping, that is, once the tool
With Tmin = pi1 @NdTmax = pim,. The number of values to  trained, we have a functiofi() from [0, 1]¥ into [0, 1] mapping
choose for each parameter depends on the size of the chosen ifow any possible value of the (scaled) parameters into the (also
terval, and on the desired precision. For example, if we considerscaled) quality metric. The last step is the validation phase: we
the packet loss rate as one of the parameters, and if we expect iT@ompare the value given bf() at the point corresponding to
values to range mainly from 0% to 5%, we could use 0, 1, 2, 5 each configuratior, in the Validation Database to,; if they
and perhaps also 10% as the selected values. In this context, wgre close enough for all of them, the RNN is validated (in Neu-
call configurationa set with the formy = {v1,...,vp}, where  ral Network Theory, we say that the taggéneralizes we)l If the
v; is one of the chosen values foy. RNN did not validate, it would be necessary to review the cho-
The total number of possible configurations (that is, the num- sen architecture and configurations. In the studies we have con-
ber]_[f-l1 H,)is usually very large. For this reason, the next step ducted while developing this approach, not once did the RNN
is to select a subset of the possible configurations to be subjecfail to be validated. In fact, the results produced by the RNN
tively evaluated. This selection may be done randomly, but it is are generally closer to the MOS than that of the human subjects
important to cover the points near the boundaries of the config-(that is, the error is less than the average deviation between hu-
uration space. It is also advisable not to use a uniform distri- man evaluations). As the RNN generalizes well, it suffices to
bution, but to sample more points in the regions near the con-train it with a small (but well chosen) part of the configuration
figurations which are most likely to happen during normal use. space, and it will be able to produce good assessments for any
Once the configurations have been chosen, we need to geneconfiguration in that space. The choice of the RNN as an ap-
ate a set of “distorted samples”, that is, samples resulting fromproximator is not arbitrary. We have experimented with other
the transmission of the original media over the network undertools, namely Artificial Neural Networks and Bayesian classi-
the different configurations. For this, we use a testbed, or net-fiers, and found that RNN perform better in the context consid-
work simulator. For instance, in the case study presented in secered. ANN exhibited some performance problems due to over-
tion 3, we've used a proxy to generate the desired loss rates an¢raining, which we did not find when using RNN. As for the
distributions (cf. section 3 for details) on a local area network. Bayesian classifier, we found that while it worked, it did so quite
Formally, we must select a set 8f media samples$o,,, ), roughly, with much less precision than RNN. Besides, it is only
m =1,--- , M, for instance M short pieces of audio (subjec- able to provide discrete quality scores, while the NN approach
tive testing standards advise to use sequences having an aveallows for a finer view of the quality function.

m=1



The neural network model used has some interesting mathin the Jackson case) but by solving the following non-linear one:
ematical properties, which allow, for example, to obtain the

derivatives of the output with respect to any of the inputs, which N N N

is useful for evaluating the performance of the network under A+ ijrjpji
changing conditions (see next section). Besides, we have seen pi = jle

that a well trained RNN will be able to give reasonable results _ _
even for parameter values outside the ranges considered during rit A+ Z PETkPki

training, i.e. it extrapolates well. =1

The method proposed produces good evaluations for a widdt can then be proved that when this system has a solution
range variation of all the quality affecting parameters, at the costps, - - - , pas Such that for each nodst is p; < 1, then the pro-
of one subjective test. In [19], the authors present results whichcess is stable, and the product-form result holds (see [10]).
have a correlation coefficient of about 0.97 with human results  To use such a queuing network as a learning tool, we per-
for video streams. For a detailed comparison of this approachform the following mapping: the input variables (bit rate, loss
with other objective audio assessment metrics from a perfor-rate, etc.) are scaled into [0,1] and then associated with the ex-
mance standpoint, see [21]. ternal arrival rates of positive customersfaspecific nodes of

the network\,--- , A}. The remaining external arrival rates
of positive customers are set to 0; we also set to zero the ex-
2.1. RNN: Open Queuing Networks as Statisti- ternal rates pf n_egative customers. The quality of the sequence
cal Learning Tools a.ft'er normall|zat|on also on [0,1] is mapped to t.he Ioa}d of a spe-
cific nodeo in the system. The problem now is to find a net-
) i . work such that when\| = vy, --- , A} = vps, then the load
Let us briefly describe the way we can use a spec_|f|c Classof the chosen nodeis close tqu. This is an optimization prob-
of queuing netyvorks as a very eﬁ'c'ef‘t statls.ucal Iear_nmg too"dlem where the control variables are now the remaining param-
The mathematu;al object and its use in learning was introduce eters of the network: the service ratesand the routing proba-
and developed in [9, 11, 12]. bilities »+ andp—
. . . . . pz; ng )

An RNN is an open Markovian queuing network with posi-  For all neurons such that; < 1 (that is, for all neuron that
tive and negative customers, also called a G-network. We havgjoes not send all its signals (its customers) out of the network),
N nodes (or neurons) which arg\/ /1 queues (the service rate e denotew;; = ripfj andw;; = p;p;;. Thesew? factors are
of node: is denoted by-), interconnected, receiving customers  cajled weightsas in the standard neural network terminology,
from outside and sending customers out of the network. Cus-gng they play a similar role in this model. Instead of optimiz-
tomers are "positive” or “negative”; the arrival flow of positive  jng with respect to the service rates and the transition probabili-
(respectively negative) customers arriving at nédeom out-  tjes, the standard approach is to do it with respect to the weights,

side is Poisson with rat&;" (respectively\;). After leaving  and just to keep constant the service rates of the “output” neu-
neuron (queue), a customer leaves the network with probabil- yons (those neuronswhered; = 1).

ity d;, goes to queug as a positive customer with probabil-

ity p;; and as a negative customer with probabilify. When — niques such as gradient descent (observe that we are able to
a negative customer arrives at a nadgither from outside or compute any partial derivative of the output, using the non-

from another queue) it disappears, removing the last customefinear system of equations satisfied by the occupation rates).

ati, if any. Transfers between queues are, as usual with queuingge the given papers on learning with RNN for details about
network models, instantaneous. This means that negative CUse available procedures.

tomers can not be observed; at any point in time there are only

positive customers in the network; negative customers act only

assignals modifying the behavior of the system. 3. Our approach at work
Let us denote byV; the number of customers in queiat

timet. Then, it was proved in [10, 11] that when the (Markov)

processN, = (N},--- ,NM) is stable, its stationary distribu-

tion is of the product-form type: that is, assuming th&i) is

stationary, we have

The optimization problem can be solved using standard tech-

In this section we describe in detail the application of the ap-
proach we propose to a specific type of situation and we pro-
vide some numerical results to illustrate the method and its use.
Our choice is thus to study the performance of a one-way voice
stream transmitted over a best—effort network.

M
Pr(N, = (ky,-- , kar)) = [J(1 = pi)of. 3.1. Modeling
i=1
We resume here the main example discussed in the Introduc-
The factorspy, - - - , pas in this expression are the loads of the tion. That is, we want to predict the behavior of some audio
nodes in the network. The specificities of these networks makestreaming application over an IP network (for instance, a low
that these loads are not obtained by solving a linear system (adandwidth radio). As discussed, our approach has two parts: a



modeling part for performance evaluation purposes, and a pernetwork part of the analysis apeandW. Since
ceived quality evaluation function that will receive inputs from
the former. For illustration purposes, and in order to simplify
the presentation, let us consi_der the whole networ_k representeq,q immediately have the constraint

by anM /M /1/W model as discussed above. The input param-

eters of the model are its loadand its storage capacity’. We 0 < oo = mlbsg — 1. (2)

also want to take into account two different codecs, the possi- _ ) o ) _

bility of using FEC and, in that case, its offset, and the packe- The d|s_cu55|on on the loss probability is a I|tt|¢ b_|t more com-
tization interval (i.e, the length in milliseconds of speech con- plex. Since _the use of thM,/M/l/W model IS illustrative
tained in each packet). These three parameters are specific tgere, let us JUSt_ give the main element in the simplest case of
the source. We will consider that, as is the case in the current®Pso < 2. Inthis caseg < gp = 1. We want that

Internet, audio traffic represents a very small fraction of the to- 1—p

tal traffic, and therefore the impact of changing codecs, or using mg
more or less redundancy in the flow is negligible on the global
load p. From the modeling point of view, we will just focus on
losses. Of course, more parameters can be taken into account, as Do

long as they can be derived from the chosen model. For exam- W =W, = {hﬂ (ﬁ) /111(9)} : 3)
ple, if we were to consider interactive applications as opposed ¢ po

to one-way streaming, network delay and jitter would need to If o = 1, thenp, = (W + 1)~ ! and

be considered too.

mlbs =1+ p,

w
Spo;

which after some algebra gives, for any 1,

17
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As recalled before, we know that the loss probability or Do

loss rate is related to the inputs variablesand W through i o )
the expressiom;, = 0" (1 — 0)/(1 — o™ +1) if o # 1, and This means that our analysis will consider the valueg ahd

pr = 1/(W + 1) if o = 1. The loss rate alone is too poor to W in specific domains, which are also meaningful data for the

capture the way losses have an impact on quality. This is largely"€twork designer.

supported in the literature [7, 14, 20], and is confirmed in our )

experiences. In many cases, the perceived qualities of differen8-2. The quality evaluator

samples are quite different even if the loss rate in the network . )

is the same. For this reason, we chose to use a second parame- L€t US consider now the quality evaluator part. We have

ter to characterize the loss process: the mean loss burst size (d&/réady said that we have chosen our network parameters so
noted herein bynlbs). that they reflect conditions that are actually found on the Inter-

net [29]. As we considered only unidirectional streams, the most

This means that our quality evaluation component is a func-relevant network parameters were the loss rate and the mean
tion f() of six variables: the four source-related (codec, exis- loss burst size. As seen in section 3.1, those parameters are eas-
tence of FEC, FEC offset, packetization interval) and two char-jly derived from our network model. If need be (for instance,
acterizing the network effect: loss raje.) and mean loss burst  in order to evaluate a two—way stream), other network parame-
size fulbs). ters such as the mean end—to—end delay and jitter could be de-
rived and used.

As for the coding parameters, we chose the codec, the redun-
dancy scheme used (whether FEC was used, and if that was the
case, the offset of the FEC packets), and the packetization inter-
val (i.e, the length in milliseconds of speech contained in each
packet).

In order to transport our streams, we used the Robust Au-
dio Tool (RAT) [18], which was developed as part of the MICE

In our model choice, we need to compuigbs as a func-
tion of p and W, which is a simple task. The probability that
a burst of losses has size j > 1, is equal top’~'q where
p=o0/(1+p)andg=1—p=1/(1+ p). This is because a
burst has sizg iff after a first loss, thanextpacket is lost (prob-
ability p), and the next one, and so on exagtly 1 times, and
the following packet is not lost, which happens with probabil-

. . : _ -1,
|1ty q._The expectatiomlbs is thenmlbs = 3., p'~"q = project at UCL. This conferencing tool provides all the needed
/a=1+ p. ; ) . o X . .
configuration options, and it is easily scriptable, which greatly
Recall now that we choose to limit the analysis to some spe-simplifies the creation of the distorted samples.
cific ranges according to the goals of the study. For the two net- We implemented our network testbed on a LAN, on which
work parameters, assume we decide that the lospratéll be we generated losses according to a simplified Gilbert model
considered in the rang®, po] (for instancep, = 0.15, because  consisting of a two—state homogeneous Markov chain [29]. This
with higher loss rates most current VoIP applications see theirmodel has been shown to produce loss processes very similar
quality degraded way below acceptable levels). In the same wayto those found on the Internet [1, 24, 29]. Working on a LAN,
we considemlbs € [0, mlbsy] (for instancemlbsy = 4 follow- where losses are negligible, allowed us to finely control the loss
ing the observation of traces in the Internet [29]). Of course, this process during the generation of the samples. Table 1 presents a
must be translated into our final input parameters, which for thesummary of the parameters used.



|| Parameter | Values ||
Loss rate 0%. ..15% ' |
Mean loss burst size 1...25
Codec PCM Linear 16 bits, GSM
FEC ON/OFF
FEC offset 1...3
Packetization interva 20, 40, and 80ms

Table 1. Network and encoding parameters and

values used

Figure 1. The RNN architecture used for this case

With twelve original samples, we chose 112 parameter con-  Study: a very simple 2-layer feed-forward net-
figurations (with a bias toward PCM encoding and small packet work
sizes, and making sure that border configurations were present)
We then generated 112 groups of four distorted samples each.
We had these samples evaluated by 17 people, and after per
forming the statistical screening recommended in [17], we had
to discard the evaluations of one of the subjects. The 112 con-
figurations were divided into two groups, one of 92 configu-
rations used to train the RNN (so, for the Training Database), P
and another one of 20, used as a control group (for the Valida- AN X
tion Database). The configurations used for training were cho- O
sen randomly among the whole set.

Once we had the subjective evaluation, we proceeded to train I W\l
several RNN, in order to find the most appropriate architecture & Y Ty
to use. In [19], the authors suggest a 3-layer feed-forward ar- it \ o
chitecture, with a large hidden layer. We used 3 different archi- =
tectures, namely: o 4 L - L e e

Sequence number

e a 3-layer feed-forward RNN as proposed in [19],

e a 3-layer RNN, with a recurrent hidden layer, and )

Figure 2. MOS for the 20 control samples: Hu-
mans (Actual MOS) vs. 3—-layer recurrent RNN vs.
2-layer feed forward RNN

e avery simple, 2—-layer feed-forward RNN, with the inputs
connected directly to the output neuron (see Figure 1).

Surprisingly, we didn’t find any significant difference in the
performances of the three architectures for our application. We
tried using a bootstrap—like approach to train the smallest net-
work with the output of the recurrent one (this allows to build

n
a large Training Database), but there was no noticeable differ- Z pwi
. . . . . . . . J % i mn+1
ence in their outputs either. We find this very interesting, since =
it allows to represent the quality of the speech stream with a Prnt1 = n
relatively simple formula, obtained by substituting our coeffi- Tn+l + Z PiW; pi1
cients in the RNN general formula. Figure 1 shows the structure j=1

of our RNN, and Figure 2 shows its performance for the Vali-
dation Database (i.e. a plot of the estimated MOS values versu
the actual MOS values).

If we look at the topology depicted in Figure 1, we see that it
is of the feed-forward type (there is no circuit in it, or, in other
words, every customer visits a given node at most only once
In this case, the calculations are particularly simple: denote by

én our experiments, whene = 6, we decided to keep constant
the rate of neurof (the value we used was = 0.01). Once
trained, the values of the weights are given in Tables 2 and 3.

Observe that the preceding discussion leads to the following
)_expression for the quality of the stream:

6
1 ton the entry neurons and by+ 1 the only output one. We Z a\t
have thatforali = 1,--- ,n, i=1 o
PO I T — 0.01+ 3 b
Ti Wi T W0 im1



where
+ —
w,; w.
7
a; = S — L — and bz =0 47 —.
Wy 7+ W, 7 Wy 7+ W, 7

Such a simple and explicit expression allows to easily ana-
lyze the variation of the quality with respect to specific param-

multiplying numerator and denominator by 100 for typographi-
cal purposes)

13.26 + 2.010 + 6.740" — 200"+ — 2.01pW+2
16.59 + 3.990 + 93.260" — 109.80W +1 — 3.999W 2"

Q=

eters. Formally, setting, = 0 andby = 0.01,

6
C()+ E CZA;L
i=1

Q
8)\+ - 6
et YA’
=1
where
e = | Y| = b — brag (in particular,cy, = 0).
b, b;

For example, in Figure 8 we show the sensitivity of the qual-
ity with respect to the load for two values of the capacity, in a

Parameter [| w;;

Codec 0.831879
FEC 1.53147
FEC Offset || 1.08491
Loss rate 0.193885
Mean burst|| 1.12165
size

Packetization 1.50425
interval (W

Table 2. Weights of positive connexions in the
expression of quality (see relation (4))

specific configuration (see below).
Let us now give an example of a closed form expression for

quality, as a function of the parameterandW (that is, an in-
stance of relation (1)). In Table 1 we have the list of the 6 en-
tries in the neural network (that is, in functigf{) using the
notation given in the Introduction). Respecting the same order-
ing, x; is the loss rate, going from 0 to 0.1b; is the mean loss
burst size, going from 0.4 to 1.0 (recall that we scale to work
with variables in[0, 1], 0.4 coming froml /2.5), etc. The RNN
tool provides us with the functiofi(z1, - - - , 2¢) mapping these

6 variables into a MOS quality metric. Assume that we fix vari-
ablesz; to zg to some specific values, and that we build a new
function as in relation (1) having as input variables- - - , xg,
plus W (the buffer size) an@, theglobal load of the link. To
this purpose, we use the expressionsofthe loss probability),
andz, (the normalized mean burst loss rate), as a function of
these two new input variablé® andp, provided by the analysis

of the associated performance model d¢A//1/WW queue in

Parameter [| w,

Codec 1.50221
FEC 1.64266
FEC Offset || 1.36289
Loss rate 2.68204
Mean burst|| 2.23472
size

Packetization 1.59028
interval (W

Table 3. Weights of negative connexions in the
expression of quality (see relation (4))

our example). Recall that the limited range of the loss rate and ) ] o
the mean loss burst size lead to corresponding specific ranges Figures 3 through 8 illustrate the kind of insight that a net-

to the load and the buffer size, namely< oo andW > W,
(see relations (2) and (3)). Functigifxy, - - - ,z¢) is rational
with known coefficients (as previously described). Once vari-
ablesx3 to x4 fixed to specific values, and; (resp.z») re-
placed byr; = (1 — 0)o" (1 — ¢~ (W*D) (resp.zy = 1 + o),

we obtain, after some algebra,

a+fBo+70" — (v + )V = gVt
o _|_ﬂlg + ’7/9W _ (,Y/ + O/)QW'H _ B/QW+2'

Q= 5)

The parameters, 3, v, o/, 3’ and+’ are functions of the encod-
ing ones. As an example, assume we chose the PCM codec, FE
with an offset of 1 and a packetization interval equal to 20 ms.
We obtaina = 0.1326, 8 = 0.0201, v = 0.0674, o’ = 0.1659,

B = 0.0399, v/ = 0.9326. The quality function becomes (after

work designer can gain from using the approach proposed to
know how quality reacts to network impairments. Currently,
networks tend to be over—dimensioned if some level of perfor-
mance is to be attained. With the method we provide, it should
be possible to adjust the network more finely, obtaining the de-
sired QoS levels without wasting resources. For example, know-
ing (approximately) the expected traffic levels, and the fraction
of that traffic which is expected to be voice flows, one can adjust
the needed capacity (and thus the expected load), so as to main-
tain voice quality over a certain threshold. Moreover, one could
even evaluate the utility (or lack thereof) of using FEC to pro-
@ct those flows, depending on the expected increase in load that
it would generate, and its impact on quality. The same idea is ap-
plicable to other types of real-time traffic, such as video, for ex-
ample.
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ferent FEC settings. W =5

Figure 6. Quality as a function of the load and

In Figures 3 and 4, we can see how different FEC settings network capacity, without FEC
provide different qualities under an increasing load, for two val-
ues of network capacity. We can see that the efficiency of the
FEC varies withlV, and also what's the gain obtained. A qual- both network load and capacity, with and without FEC, respec-
ity (MOS) value of 3 is considered to be “acceptable” [17]. It tively. (o, W) plane is feasible, since the pdis, W) must sat-
is easy to see that an increase of 2Wihallows to have an ac-  isfy the restriction given in relations such as (3). see that when
ceptable quality with a quite higher load. not only that (which not using FEC, the variations in quality as the load increases are
is to be expected, anyway), but we can know how much higher,more pronounced than when a FEC scheme is present. This kind
and then make a design decision based on the QoS levels wef plot allows to measure the benefits of using FEC or not, de-
want to attain, and the costs associated with the higher capacpending on what the expected amount of VolIP traffic is in our
ity. It is also interesting to see that this kind of curve is a more network. For example, if voice traffic is predominant in the net-
accurate representation of the FEC performance than the utilwork, and we know that using FEC increases the global load by
ity functions used for example in [3, 8], which had to be de- a factorz, we can assess whether itll be useful or not to en-
signed artificially. able it, or even if we could get away with a smaller valudiof

Figures 5 and 6 present the perceived quality as a function ofand no FEC (this doesn’'t seem to be the case here, but it may




very well be the case for other kind of application).
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Figure 7. Quality as a function of network load,

for two values of W, and with FEC (offset = 1).

us to predict quality metrics based on the expected network con-
ditions very accurately.

The method described in this paper allows to estimate the
quality as a function of parameters typical of network design.
In the example used to illustrate the approach, these are load
and capacity. However, the technique basically works with any
network model, provided that it allows to derive the relevant
performance metrics. An important feature of our proposal is
that the performance model and the pseudo-subjective evalu-
ation tool must fit together. Typically, the starting point is to
build the pseudo-subjective evaluation tool, using the most rel-
evant source and network parameters for the applications con-
sidered. Then, the model used must provide the network param-
eters’ values needed by the former. In the example used in the
paper to explain our approach, the selected quality affecting net-
work parameters were the loss rate and the mean loss burst size.
The model (a simplé//M/1/W queue) was then used to pro-
vide them as functions of the load and the capacity represented
by W.

We believe that this method will allow network designers to

better take multimedia applications into account when dimen-

sioning new networks, allowing them to predict the expected
) ) . ) qualities for each application, by coupling a model of the net-
Figure 7 shows two “cuts” of figure 5, which show the qual- \york with quality predictors adapted to each application. As this

ity as a function of load for two values .

kind of applications becomes more and more common, we be-

lieve that the usefulness of being able to predict how they will

-0.57

difffquality load)

-2.57

o o1 0z 03 04 05 0B 07

Legend

Figure 8. 9Q/dp as function of p

Finally, figure 8 illustrates the differences in the variation of
quality under the load, as the derivative of the quality with re-
spect to the load, for two different network capacities.

4. Conclusions

In this paper, we present a new approach to evaluating net-
work performance, by taking into account the end—user percep-
tion of the quality of networked multimedia applications. We do
this by integrating classic modeling techniques with a pseudo—
subjective multimedia quality assessment approach. This allows

work on a new network will becomes more and more evident.
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