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Abstract

This paper proposes a new and accurate way of predicting
the end-to-end performance of a multimedia stream. It con-
sists of coupling an approach we have previously developed,
which is able to capture very precisely the way humans assess
an arriving stream, with classical performance evaluation mod-
els. The former approach can automatically quantify the quality
of the connection as humans would do (using statistical learn-
ing tools), considering this quantitative measure of quality as
a function of measurable parameters of the network and the
source; the latter allows mapping this “ultimate” quality value
to input parameters such as offered traffic or loads, through, for
instance, queuing models. In the paper, we also propose a sim-
plification of the global approach dealing with simple closed
formulas. We illustrate our approach with a simple case study
of unidirectional VoIP performance.

1. Introduction

In recent years, the growth of the Internet has spawned a
whole new generation of networked applications, such as VoIP,
videoconferencing, video on demand, music streaming, etc.
which have very specific, and stringent, requirements in terms
of network QoS. The current Internet infrastructure was not de-
signed with these kinds of applications in mind, so multimedia
applications’ quality is very dependent on the capacity, load and
topology of the networks involved, as QoS provisioning mech-
anisms are not widely deployed. Therefore, it becomes neces-
sary to take these new applications into account when design-
ing a new network.

The problem is that it is not easy to accurately assess the per-
formance of multimedia applications, as the quality perceived
by the end user is a very subjective concept. There are currently
three ways to perform this assessment. The first one is to put hu-
man observers in front of the streams and to ask them about their
perception of quality; this defines what the ultimate quality is,
and it is calledsubjective testing. The associated procedures are
today well understood; many of them have even been standard-
ized (see next section). The second one is to implement some
“distance metric” between the original sample and the one re-
ceived; this is calledobjective testing. It has been designed to

analyze the coding effect on the sequences (not the network im-
pact on them). Unfortunately, when the sequences have been
transmitted over a network, the results given by objective mea-
sures correlate poorly with the subjective ones (see next section
for some references).

The third approach is the one published in [19, 22]. The idea
is to train an appropriate tool (a Random Neural Network, or
RNN) to behave like a “typical” human evaluating the streams.
This is not done by using biological models of perception or-
gans but by identifying an appropriate set of input variables re-
lated to the source and to the network, which affect the quality.
One of the main characteristics of this approach is that the result
is extremely accurate (somehow by construction, as it matches
very well the result obtained by asking a team of humans to
evaluate the streams). In [22], we applied this method to an-
alyze the behavior of audio communications on IP networks,
with very good results after comparison with real human evalu-
ations. In the next section we provide a detailed description of
this approach, but let us point out here a useful way of look-
ing at it. The method consists of a procedure allowing to build
a functionQ = f(x1, · · · , xP ) wherex1, · · · , xP are source
and network parameters (such as the codec, source bit rate, loss
rate, jitter, . . . ) andQ is a measure of quality (such as a Mean
Opinion Score, or MOS). The results presented in [19, 22] show
that if the stream encounters source and network conditions
such that the chosen parameters have valuesx1, · · · , xP , then
f(x1, · · · , xP ) will be very close to the quality value an aver-
age human would give to it.

The main contribution of this paper is the coupling of this
technique with standard performance models in order to pre-
dict the behavior of the systems, typically for dimensioning or
for capacity planning purposes. Let us explain this more in de-
tail. Assume you are in charge of evaluating the performance of
some IP network to be deployed in the future, with respect to
some specific streaming application. You decide to use a very
simple model, for instance, anM/M/1/W queue (represent-
ing a whole network by just a queue is a frequent simplifica-
tion, e.g. [2, 3, 8]). This model should allow you to derive stan-
dard performance measures such as the loss probability (assum-
ing the system in equilibrium). The inputs are the arrival rate (or
offered mean traffic)λ, the equivalent transmission rateµ that
the whole network offers to the packets and the maximum num-
ber of packets that the network can hold, represented globally



here by the storage capacityW of the queue. This implies that
these parameters can be estimated from the network character-
istics and from the expected behavior of the traffic. In symbols,
the loss probabilitypL is given bypL = %W (1−%)/(1−%W+1)
with % = λ/µ 6= 1 (if % = 1 thenpL = 1/(W + 1)). Since
we know that the quality of the stream strongly depends on the
losses, computingpL should allow the designer to tune the ap-
propriate control variables in order to obtain a loss probabil-
ity less than some specific threshold. From a practical point of
view, the problem with this approach is that the user is in fact
sensitive only to his/her perception of the quality, which is a
strongly subjective concept. This perceived quality depends on
many factors other than the loss rate (probably some of them
even not well identified), and this dependency is complex and
not well understood. The approach we present here is to com-
bine the method proposed in [19] with standard modeling tech-
niques in order to choose, say,% andW such thatthe perceived
quality itself is high enough.

Let us say it again in a more formal way. The standard mod-
eling approach in usual performance evaluation activities gives
you performance metrics such as loss rates, mean delays, etc.
as functions of available input data or directly controllable pa-
rameters (such as arrival rates, service rates, routing probabil-
ities, storage capacities, etc.). Denote byν1, ν2, . . . these data
variables or parameters. Ifx1, x2, . . . represent the performance
metrics, queuing models typically give to you expressions of
the formxi = gi(ν1, ν2, . . .). For instance, in the example of
theM/M/1/W model, we could have the loss rate and the av-
erage delay as functions of the load% and the storage capac-
ity W . Our proposal here is to build a function giving to you the
qualityQ (as perceived by the user) as a function ofν1, ν2, . . .
through

Q = f(g1(ν1, ν2, . . .), g2(ν1, ν2, . . .), . . .). (1)

Later in the paper we provide a closed form of such a function
in the case of an audio application (see relation (5)).

Consider another situation. You need to analyze the effect of
the offset of a FEC (Forward Error Correction) technique such
as the one proposed in [8] on quality using a model (as, for in-
stance, in [2, 8]). What people usually do is to build a model
(some queuing system capturing the behavior of the network),
with perhaps an appropriate loss model, and then, to obtain a
performance metric as a function of specific input parameters.
At this point, someutility functionsare used to take into ac-
count the way users react. These functions are mappings be-
tween the performance metrics and some abstract concept of
quality. Our proposal eliminates the need for these functions
by providing avalidatedmapping between network parameters
(and also source parameters) and perceived quality. Moreover,
recall that our functions can have more than one variable. For
instance, in the example proposed later in this text, we will pro-
vide a function mapping the load%, the network memory ca-
pacityW , the offset of the FEC data, the type of codec and the
packetization interval, into quality, for a voice stream. There-
fore, there is no need for using these auxiliary utility functions:
if your problem is to analyze the effects of the FEC offset (for

instance, to look at its optimal value under some specific con-
ditions) our method gives you a functionQ = f(. . . , x, . . .)
as explained before, where among the different input parame-
tersx is the FEC offset.

A last word about the modeling part of the process. In this pa-
per we propose an approach and we chose a very simple model,
anM/M/1/W queue, to illustrate it because it is a well known
model, and it is simple enough to allow us to keep the focus
on the method. However, it should be clear that the model to
choose depends on the accuracy you need, the data you have,
the questions you have to answer, the available computer power
if a computer is needed, etc. For instance, if you have to esti-
mate the performance of some UDP-based application using a
TCP-friendly control algorithm and you decide to use some spe-
cific model to capture the aspect of the system behavior you are
interested in, you have to build yourf() function in order to
be able to perform the proposed mapping illustrated in (1). If
your model is accurate (that is, if the quality of yourgi() func-
tions is high, then (1) will give you a good estimate of the ulti-
mate quality, directly as a function of your data. Coming back
to the first simple example used here, perhaps you will decide
to represent your system by a complex Markovian queuing net-
work having many “low level” input parameters (instead of just
% andW ), to be solved only numerically. In that case,f() will
be accessible through a numerical procedure, but again, the re-
sult will be an accurate estimation of the quality as seen by the
end–user of the application, whose efficiency will be essentially
proportional to the efficiency of the model you use.

The rest of the paper is organized as follows. Section 2
presents the quality assessment method used. In section 3, we
show how to use it together with classical queuing models. Sec-
tion 3 also presents an example of the results obtained with our
method on one–way VoIP streams. Finally, section 4 presents
our conclusions and future work in this area.

2. Pseudo–subjective Quality Assessment

Correctly assessing the perceived quality of a multime-
dia stream is not an easy task. As quality is, in this con-
text, a very subjective concept, the best way to evaluate it is to
have real people do the assessment. There exist standard meth-
ods for conductingsubjectivequality evaluations, such as the
ITU-P.800 [17] recommendation for telephony, or the ITU-R
BT.500-10 [15] for video. The main problem with subjec-
tive evaluations is that they are very expensive (in terms of both
time and manpower) to carry out, which makes them hard to re-
peat often. And, of course, they cannot be a part of an automatic
process.

Given that subjective assessment is expensive and impracti-
cal, a significant research effort has been done in order to obtain
similar evaluations byobjectivemethods, i.e., algorithms and
formulas that measure, in a certain way, the quality of a stream.
The most commonly used objective measures for speech/audio
are Signal-to-Noise Ratio (SNR), Segmental SNR (SNRseg),
Perceptual Speech Quality Measure (PSQM) [6], Measuring
Normalizing Blocks (MNB) [28], ITU E–model [16], Enhanced



Modified Bark Spectral Distortion (EMBSD) [30], Perceptual
Analysis Measurement System (PAMS) [23] and PSQM+ [5].
For video, some examples are the ITS’ Video Quality Met-
ric (VQM) [4, 27], EPFL’s Moving Picture Quality Metric
(MPQM), Color Moving Picture Quality Metric (CMPQM) [25,
26], and Normalization Video Fidelity Metric (NVFM) [26]. As
stated in the Introduction, these quality metrics often provide as-
sessments that do not correlate well with human perception, and
thus their use as a replacement of subjective tests is limited. Ex-
cept for the ITU E–model, all these metrics propose different
ways to compare the received samplewith the original one. The
E–model allows to obtain an approximation of the perceived
quality as a function of several ambient, coding and network pa-
rameters, to be used for network capacity planning. However, as
stated in [13] and even in its specification [16], its results do not
correlate well with subjective assessments either.

The method used here [22, 19] is an hybrid between sub-
jective and objective evaluation. The idea is to have several dis-
torted samples evaluated subjectively, and then use the results of
this evaluation to teach a RNN the relation between the param-
eters that cause the distortion and the perceived quality. In order
for it to work, we need to consider a set ofP parameters (se-
lecteda priori) which may have an effect on the perceived qual-
ity. For example, we can select the codec used, the packet loss
rate of the network, the end–to–end delay and/or jitter, etc. Let
this set beP = {π1, . . . , πP }. Once thesequality–affectingpa-
rameters are defined, it is necessary to choose a set of represen-
tative values for eachπi, with minimal valueπmin and maximal
valueπmax, according to the conditions under which we expect
the system to work. Let{pi1, · · · , piHi} be this set of values,
with πmin = pi1 andπmax = piHi . The number of values to
choose for each parameter depends on the size of the chosen in-
terval, and on the desired precision. For example, if we consider
the packet loss rate as one of the parameters, and if we expect its
values to range mainly from 0% to 5%, we could use 0, 1, 2, 5
and perhaps also 10% as the selected values. In this context, we
call configurationa set with the formγ = {v1, . . . , vP }, where
vi is one of the chosen values forpi.

The total number of possible configurations (that is, the num-
ber
∏P
i=1Hi) is usually very large. For this reason, the next step

is to select a subset of the possible configurations to be subjec-
tively evaluated. This selection may be done randomly, but it is
important to cover the points near the boundaries of the config-
uration space. It is also advisable not to use a uniform distri-
bution, but to sample more points in the regions near the con-
figurations which are most likely to happen during normal use.
Once the configurations have been chosen, we need to gener-
ate a set of “distorted samples”, that is, samples resulting from
the transmission of the original media over the network under
the different configurations. For this, we use a testbed, or net-
work simulator. For instance, in the case study presented in sec-
tion 3, we’ve used a proxy to generate the desired loss rates and
distributions (cf. section 3 for details) on a local area network.

Formally, we must select a set ofM media samples(σm),
m = 1, · · · ,M , for instance,M short pieces of audio (subjec-
tive testing standards advise to use sequences having an aver-

age 10 sec length). We also need a set ofS configurations de-
noted by{γ1, · · · , γS} whereγs = (vs1, · · · , vsP ), vsp being
the value of parameterπp in configurationγs. From each sample
σi, we build a set{σi1, · · · , σiS} of samples that have encoun-
tered varied conditions when transmitted over the network. That
is, sequenceσis is the sequence that arrived at the receiver when
the sender sentσi through the source-network system where the
P chosen parameters had the values of configurationγs.

Once the distorted samples are generated, a subjec-
tive test [15, 17] is carried out on each received pieceσis.
After statistical processing of the answers, the sequenceσis re-
ceives the valueµis (often, this is aMean Opinion Score,
or MOS). The idea is then to associate each configura-
tion γs with the value

µs =
1
M

M∑
m=1

µms.

At this step we have a set ofS configurationsγ1, . . . , γS .
Configurations has valueµs associated with it. We randomly
chooseS1 configurations among theS available. These, to-
gether with their values, constitute the “Training Database”. The
remainingS2 = S − S1 configurations and their respective val-
ues constitute the “Validation Database”, reserved for further
(and critical) use in the last step of the process.

The next step is to train a statistical learning tool (in our case,
a RNN) to learn the mapping between configurations and values
as defined by the Training Database. Assume that the selected
parameters have values scaled into [0,1] and the same with qual-
ity. Once the tool “captured” the mapping, that is, once the tool
trained, we have a functionf() from [0, 1]P into [0, 1] mapping
now any possible value of the (scaled) parameters into the (also
scaled) quality metric. The last step is the validation phase: we
compare the value given byf() at the point corresponding to
each configurationγs in the Validation Database toµs; if they
are close enough for all of them, the RNN is validated (in Neu-
ral Network Theory, we say that the toolgeneralizes well). If the
RNN did not validate, it would be necessary to review the cho-
sen architecture and configurations. In the studies we have con-
ducted while developing this approach, not once did the RNN
fail to be validated. In fact, the results produced by the RNN
are generally closer to the MOS than that of the human subjects
(that is, the error is less than the average deviation between hu-
man evaluations). As the RNN generalizes well, it suffices to
train it with a small (but well chosen) part of the configuration
space, and it will be able to produce good assessments for any
configuration in that space. The choice of the RNN as an ap-
proximator is not arbitrary. We have experimented with other
tools, namely Artificial Neural Networks and Bayesian classi-
fiers, and found that RNN perform better in the context consid-
ered. ANN exhibited some performance problems due to over-
training, which we did not find when using RNN. As for the
Bayesian classifier, we found that while it worked, it did so quite
roughly, with much less precision than RNN. Besides, it is only
able to provide discrete quality scores, while the NN approach
allows for a finer view of the quality function.



The neural network model used has some interesting math-
ematical properties, which allow, for example, to obtain the
derivatives of the output with respect to any of the inputs, which
is useful for evaluating the performance of the network under
changing conditions (see next section). Besides, we have seen
that a well trained RNN will be able to give reasonable results
even for parameter values outside the ranges considered during
training, i.e. it extrapolates well.

The method proposed produces good evaluations for a wide
range variation of all the quality affecting parameters, at the cost
of one subjective test. In [19], the authors present results which
have a correlation coefficient of about 0.97 with human results
for video streams. For a detailed comparison of this approach
with other objective audio assessment metrics from a perfor-
mance standpoint, see [21].

2.1. RNN: Open Queuing Networks as Statisti-
cal Learning Tools

Let us briefly describe the way we can use a specific class
of queuing networks as a very efficient statistical learning tool.
The mathematical object and its use in learning was introduced
and developed in [9, 11, 12].

An RNN is an open Markovian queuing network with posi-
tive and negative customers, also called a G-network. We have
N nodes (or neurons) which are./M/1 queues (the service rate
of nodei is denoted byri), interconnected, receiving customers
from outside and sending customers out of the network. Cus-
tomers are “positive” or “negative”; the arrival flow of positive
(respectively negative) customers arriving at nodei from out-
side is Poisson with rateλ+

i (respectivelyλ−i ). After leaving
neuron (queue)i, a customer leaves the network with probabil-
ity di, goes to queuej as a positive customer with probabil-
ity p+

ij and as a negative customer with probabilityp−ij . When
a negative customer arrives at a nodei (either from outside or
from another queue) it disappears, removing the last customer
at i, if any. Transfers between queues are, as usual with queuing
network models, instantaneous. This means that negative cus-
tomers can not be observed; at any point in time there are only
positive customers in the network; negative customers act only
assignals, modifying the behavior of the system.

Let us denote byN i
t the number of customers in queuei at

time t. Then, it was proved in [10, 11] that when the (Markov)
process~Nt = (N1

t , · · · , NM
t ) is stable, its stationary distribu-

tion is of the product-form type: that is, assuming that( ~Nt) is
stationary, we have

Pr( ~Nt = (k1, · · · , kM )) =
M∏
i=1

(1− ρi)ρkii .

The factorsρ1, · · · , ρM in this expression are the loads of the
nodes in the network. The specificities of these networks make
that these loads are not obtained by solving a linear system (as

in the Jackson case) but by solving the following non-linear one:

ρi =

λ+
i +

N∑
j=1

ρjrjp
+
ji

ri + λ−i +
N∑
k=1

ρkrkp
−
ki

.

It can then be proved that when this system has a solution
ρ1, · · · , ρM such that for each nodei it is ρi < 1, then the pro-
cess is stable, and the product-form result holds (see [10]).

To use such a queuing network as a learning tool, we per-
form the following mapping: the input variables (bit rate, loss
rate, etc.) are scaled into [0,1] and then associated with the ex-
ternal arrival rates of positive customers atP specific nodes of
the networkλ+

1 , · · · , λ
+
P . The remaining external arrival rates

of positive customers are set to 0; we also set to zero the ex-
ternal rates of negative customers. The quality of the sequence
after normalization also on [0,1] is mapped to the load of a spe-
cific nodeo in the system. The problem now is to find a net-
work such that whenλ+

1 = v1s, · · · , λ+
P = vPs, then the load

of the chosen nodeo is close toµs. This is an optimization prob-
lem where the control variables are now the remaining param-
eters of the network: the service ratesri and the routing proba-
bilities p+

ij andp−ij .
For all neuronsi such thatdi < 1 (that is, for all neuron that

does not send all its signals (its customers) out of the network),
we denotew+

ij = rip
+
ij andw−ij = µip

−
ij . Thesew∗∗ factors are

calledweightsas in the standard neural network terminology,
and they play a similar role in this model. Instead of optimiz-
ing with respect to the service rates and the transition probabili-
ties, the standard approach is to do it with respect to the weights,
and just to keep constant the service rates of the “output” neu-
rons (those neuronsj wheredj = 1).

The optimization problem can be solved using standard tech-
niques such as gradient descent (observe that we are able to
compute any partial derivative of the output, using the non-
linear system of equations satisfied by the occupation rates).
See the given papers on learning with RNN for details about
the available procedures.

3. Our approach at work

In this section we describe in detail the application of the ap-
proach we propose to a specific type of situation and we pro-
vide some numerical results to illustrate the method and its use.
Our choice is thus to study the performance of a one–way voice
stream transmitted over a best–effort network.

3.1. Modeling

We resume here the main example discussed in the Introduc-
tion. That is, we want to predict the behavior of some audio
streaming application over an IP network (for instance, a low
bandwidth radio). As discussed, our approach has two parts: a



modeling part for performance evaluation purposes, and a per-
ceived quality evaluation function that will receive inputs from
the former. For illustration purposes, and in order to simplify
the presentation, let us consider the whole network represented
by anM/M/1/W model as discussed above. The input param-
eters of the model are its load% and its storage capacityW . We
also want to take into account two different codecs, the possi-
bility of using FEC and, in that case, its offset, and the packe-
tization interval (i.e, the length in milliseconds of speech con-
tained in each packet). These three parameters are specific to
the source. We will consider that, as is the case in the current
Internet, audio traffic represents a very small fraction of the to-
tal traffic, and therefore the impact of changing codecs, or using
more or less redundancy in the flow is negligible on the global
load%. From the modeling point of view, we will just focus on
losses. Of course, more parameters can be taken into account, as
long as they can be derived from the chosen model. For exam-
ple, if we were to consider interactive applications as opposed
to one-way streaming, network delay and jitter would need to
be considered too.

As recalled before, we know that the loss probability or
loss rate is related to the inputs variables% andW through
the expressionpL = %W (1 − %)/(1 − %W+1) if % 6= 1, and
pL = 1/(W + 1) if % = 1. The loss rate alone is too poor to
capture the way losses have an impact on quality. This is largely
supported in the literature [7, 14, 20], and is confirmed in our
experiences. In many cases, the perceived qualities of different
samples are quite different even if the loss rate in the network
is the same. For this reason, we chose to use a second parame-
ter to characterize the loss process: the mean loss burst size (de-
noted herein bymlbs).

This means that our quality evaluation component is a func-
tion f() of six variables: the four source-related (codec, exis-
tence of FEC, FEC offset, packetization interval) and two char-
acterizing the network effect: loss rate (pL) and mean loss burst
size (mlbs).

In our model choice, we need to computemlbs as a func-
tion of % andW , which is a simple task. The probability that
a burst of losses has sizej, j ≥ 1, is equal topj−1q where
p = %/(1 + %) andq = 1 − p = 1/(1 + %). This is because a
burst has sizej iff after a first loss, thenextpacket is lost (prob-
ability p), and the next one, and so on exactlyj − 1 times, and
the following packet is not lost, which happens with probabil-
ity q. The expectationmlbs is thenmlbs =

∑
j≥1 p

j−1q =
1/q = 1 + %.

Recall now that we choose to limit the analysis to some spe-
cific ranges according to the goals of the study. For the two net-
work parameters, assume we decide that the loss ratepL will be
considered in the range[0, p0] (for instance,p0 = 0.15, because
with higher loss rates most current VoIP applications see their
quality degraded way below acceptable levels). In the same way,
we considermlbs ∈ [0,mlbs0] (for instance,mlbs0 = 4 follow-
ing the observation of traces in the Internet [29]). Of course, this
must be translated into our final input parameters, which for the

network part of the analysis are% andW . Since

mlbs = 1 + %,

we immediately have the constraint

% ≤ %0 = mlbs0 − 1. (2)

The discussion on the loss probability is a little bit more com-
plex. Since the use of theM/M/1/W model is illustrative
here, let us just give the main element in the simplest case of
mlbs0 ≤ 2. In this case,% ≤ %0 = 1. We want that

1− %
1− %W+1

%W ≤ p0,

which after some algebra gives, for any% < 1,

W ≥W0 =
⌈

ln
(

p0

1− %(1− p0)

)
/ ln(%)

⌉
. (3)

If % = 1, thenpL = (W + 1)−1 and

pL ≤ p0 ⇐⇒W ≥W0 =
⌈

1− p0

p0

⌉
.

This means that our analysis will consider the values of% and
W in specific domains, which are also meaningful data for the
network designer.

3.2. The quality evaluator

Let us consider now the quality evaluator part. We have
already said that we have chosen our network parameters so
that they reflect conditions that are actually found on the Inter-
net [29]. As we considered only unidirectional streams, the most
relevant network parameters were the loss rate and the mean
loss burst size. As seen in section 3.1, those parameters are eas-
ily derived from our network model. If need be (for instance,
in order to evaluate a two–way stream), other network parame-
ters such as the mean end–to–end delay and jitter could be de-
rived and used.

As for the coding parameters, we chose the codec, the redun-
dancy scheme used (whether FEC was used, and if that was the
case, the offset of the FEC packets), and the packetization inter-
val (i.e, the length in milliseconds of speech contained in each
packet).

In order to transport our streams, we used the Robust Au-
dio Tool (RAT) [18], which was developed as part of the MICE
project at UCL. This conferencing tool provides all the needed
configuration options, and it is easily scriptable, which greatly
simplifies the creation of the distorted samples.

We implemented our network testbed on a LAN, on which
we generated losses according to a simplified Gilbert model
consisting of a two–state homogeneous Markov chain [29]. This
model has been shown to produce loss processes very similar
to those found on the Internet [1, 24, 29]. Working on a LAN,
where losses are negligible, allowed us to finely control the loss
process during the generation of the samples. Table 1 presents a
summary of the parameters used.



Parameter Values

Loss rate 0%. . . 15%
Mean loss burst size 1. . . 2.5
Codec PCM Linear 16 bits, GSM
FEC ON/OFF
FEC offset 1. . . 3
Packetization interval 20, 40, and 80ms

Table 1. Network and encoding parameters and
values used

With twelve original samples, we chose 112 parameter con-
figurations (with a bias toward PCM encoding and small packet
sizes, and making sure that border configurations were present).
We then generated 112 groups of four distorted samples each.
We had these samples evaluated by 17 people, and after per-
forming the statistical screening recommended in [17], we had
to discard the evaluations of one of the subjects. The 112 con-
figurations were divided into two groups, one of 92 configu-
rations used to train the RNN (so, for the Training Database),
and another one of 20, used as a control group (for the Valida-
tion Database). The configurations used for training were cho-
sen randomly among the whole set.

Once we had the subjective evaluation, we proceeded to train
several RNN, in order to find the most appropriate architecture
to use. In [19], the authors suggest a 3–layer feed-forward ar-
chitecture, with a large hidden layer. We used 3 different archi-
tectures, namely:

• a 3–layer feed-forward RNN as proposed in [19],

• a 3–layer RNN, with a recurrent hidden layer, and

• a very simple, 2–layer feed-forward RNN, with the inputs
connected directly to the output neuron (see Figure 1).

Surprisingly, we didn’t find any significant difference in the
performances of the three architectures for our application. We
tried using a bootstrap–like approach to train the smallest net-
work with the output of the recurrent one (this allows to build
a large Training Database), but there was no noticeable differ-
ence in their outputs either. We find this very interesting, since
it allows to represent the quality of the speech stream with a
relatively simple formula, obtained by substituting our coeffi-
cients in the RNN general formula. Figure 1 shows the structure
of our RNN, and Figure 2 shows its performance for the Vali-
dation Database (i.e. a plot of the estimated MOS values versus
the actual MOS values).

If we look at the topology depicted in Figure 1, we see that it
is of the feed-forward type (there is no circuit in it, or, in other
words, every customer visits a given node at most only once).
In this case, the calculations are particularly simple: denote by
1 ton the entry neurons and byn + 1 the only output one. We
have that for alli = 1, · · · , n,

ρi =
λ+
i

ri
=

λ+
i

w+
i,n+1 + w−i,n+1

,

Figure 1. The RNN architecture used for this case
study: a very simple 2–layer feed-forward net-
work

Figure 2. MOS for the 20 control samples: Hu-
mans (Actual MOS) vs. 3–layer recurrent RNN vs.
2–layer feed forward RNN

and

ρn+1 =

n∑
j=1

ρjw
+
j,n+1

rn+1 +
n∑
j=1

ρjw
−
j,n+1

.

In our experiments, wheren = 6, we decided to keep constant
the rate of neuron7 (the value we used wasr7 = 0.01). Once
trained, the values of the weights are given in Tables 2 and 3.

Observe that the preceding discussion leads to the following
expression for the quality of the stream:

Q = ρ7 =

6∑
i=1

aiλ
+
i

0.01 +
6∑
i=1

biλ
+
i

(4)



where

ai =
w+
i,7

w+
i,7 + w−i,7

and bi =
w−i,7

w+
i,7 + w−i,7

.

Such a simple and explicit expression allows to easily ana-
lyze the variation of the quality with respect to specific param-
eters. Formally, settinga0 = 0 andb0 = 0.01,

∂Q

∂λ+
k

=

c0 +
6∑
i=1

ciλ
+
i

(b0 +
6∑
i=1

biλ
+
i )2

where

ci =
∣∣∣∣ak ai
bk bi

∣∣∣∣ = akbi − bkai (in particular,ck = 0).

For example, in Figure 8 we show the sensitivity of the qual-
ity with respect to the load for two values of the capacity, in a
specific configuration (see below).

Let us now give an example of a closed form expression for
quality, as a function of the parameters% andW (that is, an in-
stance of relation (1)). In Table 1 we have the list of the 6 en-
tries in the neural network (that is, in functionf() using the
notation given in the Introduction). Respecting the same order-
ing,x1 is the loss rate, going from 0 to 0.15,x2 is the mean loss
burst size, going from 0.4 to 1.0 (recall that we scale to work
with variables in[0, 1], 0.4 coming from1/2.5), etc. The RNN
tool provides us with the functionf(x1, · · · , x6) mapping these
6 variables into a MOS quality metric. Assume that we fix vari-
ablesx3 to x6 to some specific values, and that we build a new
function as in relation (1) having as input variablesx3, · · · , x6,
plusW (the buffer size) and%, theglobal load of the link. To
this purpose, we use the expressions ofx1 (the loss probability),
andx2 (the normalized mean burst loss rate), as a function of
these two new input variablesW and%, provided by the analysis
of the associated performance model (theM/M/1/W queue in
our example). Recall that the limited range of the loss rate and
the mean loss burst size lead to corresponding specific ranges
to the load and the buffer size, namely% ≤ %0 andW ≥ W0

(see relations (2) and (3)). Functionf(x1, · · · , x6) is rational
with known coefficients (as previously described). Once vari-
ablesx3 to x6 fixed to specific values, andx1 (resp.x2) re-
placed byx1 = (1 − %)%W (1 − %−(W+1)) (resp.x2 = 1 + %),
we obtain, after some algebra,

Q =
α+ β%+ γ%W − (γ + α)%W+1 − β%W+2

α′ + β′%+ γ′%W − (γ′ + α′)%W+1 − β′%W+2
. (5)

The parametersα, β, γ,α′, β′ andγ′ are functions of the encod-
ing ones. As an example, assume we chose the PCM codec, FEC
with an offset of 1 and a packetization interval equal to 20 ms.
We obtainα = 0.1326, β = 0.0201, γ = 0.0674, α′ = 0.1659,
β′ = 0.0399, γ′ = 0.9326. The quality function becomes (after

multiplying numerator and denominator by 100 for typographi-
cal purposes)

Q =
13.26 + 2.01%+ 6.74%W − 20%W+1 − 2.01%W+2

16.59 + 3.99%+ 93.26%W − 109.8%W+1 − 3.99%W+2
.

Parameter w+
i,7

Codec 0.831879
FEC 1.53147
FEC Offset 1.08491
Loss rate 0.193885
Mean burst
size

1.12165

Packetization
interval

1.50425

Table 2. Weights of positive connexions in the
expression of quality (see relation (4))

Parameter w−i,7

Codec 1.50221
FEC 1.64266
FEC Offset 1.36289
Loss rate 2.68204
Mean burst
size

2.23472

Packetization
interval

1.59028

Table 3. Weights of negative connexions in the
expression of quality (see relation (4))

Figures 3 through 8 illustrate the kind of insight that a net-
work designer can gain from using the approach proposed to
know how quality reacts to network impairments. Currently,
networks tend to be over–dimensioned if some level of perfor-
mance is to be attained. With the method we provide, it should
be possible to adjust the network more finely, obtaining the de-
sired QoS levels without wasting resources. For example, know-
ing (approximately) the expected traffic levels, and the fraction
of that traffic which is expected to be voice flows, one can adjust
the needed capacity (and thus the expected load), so as to main-
tain voice quality over a certain threshold. Moreover, one could
even evaluate the utility (or lack thereof) of using FEC to pro-
tect those flows, depending on the expected increase in load that
it would generate, and its impact on quality. The same idea is ap-
plicable to other types of real–time traffic, such as video, for ex-
ample.



Figure 3. Quality as a function of the load, for dif-
ferent FEC settings. W = 3

Figure 4. Quality as a function of the load, for dif-
ferent FEC settings. W = 5

In Figures 3 and 4, we can see how different FEC settings
provide different qualities under an increasing load, for two val-
ues of network capacity. We can see that the efficiency of the
FEC varies withW , and also what’s the gain obtained. A qual-
ity (MOS) value of 3 is considered to be “acceptable” [17]. It
is easy to see that an increase of 2 inW allows to have an ac-
ceptable quality with a quite higher load. not only that (which
is to be expected, anyway), but we can know how much higher,
and then make a design decision based on the QoS levels we
want to attain, and the costs associated with the higher capac-
ity. It is also interesting to see that this kind of curve is a more
accurate representation of the FEC performance than the util-
ity functions used for example in [3, 8], which had to be de-
signed artificially.

Figures 5 and 6 present the perceived quality as a function of

Figure 5. Quality as a function of the load and
network capacity, with FEC (offset = 1).

Figure 6. Quality as a function of the load and
network capacity, without FEC

both network load and capacity, with and without FEC, respec-
tively. (%,W ) plane is feasible, since the pair(%,W ) must sat-
isfy the restriction given in relations such as (3). see that when
not using FEC, the variations in quality as the load increases are
more pronounced than when a FEC scheme is present. This kind
of plot allows to measure the benefits of using FEC or not, de-
pending on what the expected amount of VoIP traffic is in our
network. For example, if voice traffic is predominant in the net-
work, and we know that using FEC increases the global load by
a factorx, we can assess whether it’ll be useful or not to en-
able it, or even if we could get away with a smaller value ofW
and no FEC (this doesn’t seem to be the case here, but it may



very well be the case for other kind of application).

Figure 7. Quality as a function of network load,
for two values of W, and with FEC (offset = 1).

Figure 7 shows two “cuts” of figure 5, which show the qual-
ity as a function of load for two values ofW .

Figure 8. ∂Q/∂% as function of %

Finally, figure 8 illustrates the differences in the variation of
quality under the load, as the derivative of the quality with re-
spect to the load, for two different network capacities.

4. Conclusions

In this paper, we present a new approach to evaluating net-
work performance, by taking into account the end–user percep-
tion of the quality of networked multimedia applications. We do
this by integrating classic modeling techniques with a pseudo–
subjective multimedia quality assessment approach. This allows

us to predict quality metrics based on the expected network con-
ditions very accurately.

The method described in this paper allows to estimate the
quality as a function of parameters typical of network design.
In the example used to illustrate the approach, these are load
and capacity. However, the technique basically works with any
network model, provided that it allows to derive the relevant
performance metrics. An important feature of our proposal is
that the performance model and the pseudo-subjective evalu-
ation tool must fit together. Typically, the starting point is to
build the pseudo-subjective evaluation tool, using the most rel-
evant source and network parameters for the applications con-
sidered. Then, the model used must provide the network param-
eters’ values needed by the former. In the example used in the
paper to explain our approach, the selected quality affecting net-
work parameters were the loss rate and the mean loss burst size.
The model (a simpleM/M/1/W queue) was then used to pro-
vide them as functions of the load and the capacity represented
byW .

We believe that this method will allow network designers to
better take multimedia applications into account when dimen-
sioning new networks, allowing them to predict the expected
qualities for each application, by coupling a model of the net-
work with quality predictors adapted to each application. As this
kind of applications becomes more and more common, we be-
lieve that the usefulness of being able to predict how they will
work on a new network will becomes more and more evident.
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