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Abstract

This paper addresses the problem of quantitatively evaluating the quality of a speech stream transported over the Internet
as perceived by the end-user. We propose an approach being able to perform this task automatically and, if necessary, in real
time. Our method is based on using G-networks (open networks of queues with positive and negative customers) as Neural
Networks (in this case, they are called Random Neural Networks) to learn, in some sense, how humans react vis-a-vis a speech
signal that has been distorted by encoding and transmission impairments. This can be used for control purposes, for pricing
applications, etc.

Our method allows us to study the impact of several source and network parameters on the quality, which appears to be
new (previous work analyzes the effect of one or two selected parameters only). In this paper, we use our technique to study
the impact on performance of several basic source and network parameters on a non-interactive speech flow, namelyloss rate,
loss distribution, codec, forward error correction, andpacketization interval, all at the same time. This is important because
speech/audio quality is affected by several parameters whose combined effect is neither well identified nor understood.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

There is nowadays an increasing number of applications running over the Internet and involving
real-time transmission of speech and audio streams. Among these applications we have voice over IP
[14], IP telephony[2,38], audio streaming, teleconferencing, etc. One of the major concerns of these
applications is to maximize the QoS for a given network state. Traditionally, this is done by keeping
some of the network parameters (e.g., packet loss rate and delay variation) within certain limits and
little attention has been paid to the quality as perceived by the end-users of the applications. However,
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the current Internet infrastructure provides basically aBest-effortservice, with no provisions for QoS.
Therefore, in order to deliver the best possible quality, a better understanding of the combined effects of
all of the parameters a priori involved is a must.

Assume that we are requested to analyze the capacity of a network system used to transport an audio
flow without degrading its quality below an acceptable level, using some accurate model of the system.
The usual scenario is to analyze, say, the loss rate (because we know it is critical to the final quality of
the audio stream), and to try and determine when it is sufficiently small as to permit an acceptable QoS
level. If the model is, for example, anM/M/1/N queue with load� �= 1, the analysis could return that
in steady-state, ifN ≥ � ln(ε/[ε�+ 1 − �])/ ln �� then the loss probability is less thanε. Perhaps we
would also analyze the mean delay, or the jitter. This paper shows that the quality,as perceived by the
final user, depends in a complex way on many parameters (six in our study), not just on loss probabilities
or on the bit rate of the source, etc. We also exhibit a method being able to map such a set of parameters
onto a numerical value close to the one a human observer would give to the stream in asubjective test
[44]. Interestingly, the object used for this purpose is an open network of Markovian queues, but not as a
model of the communication service: it is used in a completely different way, as alearningtool.

Generally speaking, the analysis of speech/audio quality can be done using eitherobjectivetests or
subjectiveones. Objective tests are usually explicit functions of measurable parameters related to the
encoder or to the network[5,43,58]. Subjective tests are based on evaluations made by human subjects
under well defined and controlled conditions[44]. Obviously, the reference is the end-user’s perception,
which is directly captured by subjective tests. Concerning available objective tests, it is well known that
they do not always correlate very well with human perception[36,55]. More details are given in the
following paragraphs.

The most commonly used objective measures are Signal-to-Noise Ratio (SNR), Segmental SNR
(SNRseg), Perceptual Speech Quality Measure (PSQM)[5], Measuring Normalizing Blocks (MNB)
[58], ITU E-model[43], Enhanced Modified Bark Spectral Distortion (EMBSD)[61], Perceptual Anal-
ysis Measurement System (PAMS)[55] and PSQM+ [4]. Except for the ITU E-model, all these metrics
propose different ways to compare the received samplewith the original one, something we want to avoid
(for instance, in order to use the automatic quantitative evaluation of quality for control purposes, or for
real-time monitoring applications).

Subjective quality assessment methods measure the overall perceived audio quality, and as implied
by their name, they are carried out by human subjects. The most commonly used one for audio quality
evaluation is the Mean Opinion Score (MOS)[44], recommended by the ITU. It consists of having a set
of subjects listen to degraded audio samples in order to rate their quality, according to a predefined quality
scale (see the first part ofSections 3 and 5for more details). That is, human subjects are trained tobuild
a mapping between a set of processed audio samples and the quality scale. Although MOS studies have
served as the basis for analyzing many aspects of signal processing, they present several limitations: (a)
very stringent environments are required; (b) the process cannot be automated (by definition); (c) they
are very costly and time consuming, which makes them unsuitable to be frequently repeated.

The approach presented in this paper extends and improves the method proposed in[51] for evaluating
real-time speech quality. The main idea in[51] is to use Artificial Neural Networks (ANN) to learn the
way human subjects evaluate the quality using measures of both network and encoding distortions as
inputs. The methodology is general and any parameter can a priori be taken into account (possibly at
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the cost of a larger subjective quality database, seeSection 31). The technique presents advantages over
other objective evaluation methods, since it does not need to access the original signal, and it is not
computationally intensive, which allows for use in real-time applications or embedded devices. Besides,
it offers a good correlation in terms of MOS with subjective measures (by construction). The improvement
over our original Neural Network approach is obtained by using a different type of tool called Random
Neural Networks (RNN), which are in fact a particular kind of open queuing networks, called G-Networks
in the performance evaluation area. This recently invented model[20–22]appears to capture accurately
and robustly the function mapping the various parameters involved with the quality metric. RNN have
been used in many different domains such as image and video compression[12,13,27], error-correcting
codes[1], land mine detection[32], video quality assessment[52], where they proved themselves better
than the ANN for this kind of application, and video quality enhancement[11,28]. A survey of RNN
applications is given in[3]. There are several other applications of RNN in the area of imaging and video,
such as[19,24–26,29,33]. Using RNN for real-time speech evaluation, we did not find the common
over-training problems associated with ANN[47], which hinder the NN’s ability to extrapolate. This is
particularly useful in our context, since the NN’s extrapolation ability allows for a smaller number of
subjective tests needed to train the network (seeSection 3), and thus it lowers the cost of the method.

Our main contribution in this paper is the use of this RNN-based quality assessment mechanism in
order to study and analyze the impact of certain quality-affecting parameters such as the codec used, the
redundancy, the network loss rate (LR), the mean loss burst size (MBS) and the packetization interval
(PI) on real-time speech quality. The effects of some of these parameters on speech quality have been the
subject of previous research[16,39]. However, those studies normally consider only one or two parameters
at once, thus neglecting the effects of their interaction as a whole. The approach we present allows us
to better understand the influence of all parameters considered at the same time (cf.Section 6.2for an
example of such an analysis).

Previous studies of the performance of a speech stream either concentrated on the effect of network
parameters without paying attention to encoding parameters, or the contrary (cf.Section 2for some
annotated references). Papers that consider network parameters and use subjective tests for the evaluation
restrict the study to only one or two of the most important ones, due to the high costs associated with
subjective tests. Concerning objective approaches, there is no previously published objective quality test
that can take into account the direct influence of the whole set of parameters, considered simultaneously,
on the perceived quality.

The organization of the rest of the paper is as follows:Section 2presents related works. InSection 3we
present an overview of the methodology used. The network aspects considered are discussed inSection 4.
Section 5describes the experiments we carried out. The results we obtained are presented inSection 6.
In Section 7, we describe possible applications of our approach, and some conclusions of our work are
provided inSection 8.

2. Related works

In [39], the effect of both LR and PI on speech quality is presented. The study is based on an automatic
speech recognition system which is in turn based on hidden Markov models instead of the usual subjective

1 Fortunately, this has to be done only once provided that the database has sufficient information representing the effect of all
the parameters considered.
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Fig. 1. E-model results against the MOS subjective values on a set of speech samples distorted by both encoding and network
impairments (source:[36]).

quality tests. A similar ANN-based study is presented in[57], using data obtained from the objective
measure PESQ. It should be noted that[53] showed that PESQ is not accurate for evaluating voice quality
when considering network parameters. LR and jitter effects are studied using subjective data for several
codecs in[16]. The effect of packet loss on several speech codecs is evaluated in[9]. The authors concluded
that there are two main effects of packet loss on speech quality. First, there are missing of fragments of
the speech. Second, the adaptation logic is disrupted after the lost segment (in the decoding part). There
are other studies[45] where the main goal is to differentiate the performance of speech codecs.

Pure delay effects on speech quality in telecommunications are evoked in[46]. That work is focused
mainly on conversation, and the authors argue that round-trip delays in the range of 500 ms are annoying.
In [59] the authors study the variation of speech quality for different error concealment techniques (silence,
waveform, or LPC repair). Additionally, they evaluate the subjective speech quality against loss and they
compare the result for redundancy and no redundancy cases. The impact of cell delay variation on speech
quality in ATM networks is studied in[48].

From the available objective speech quality measures in the literature, only the ITU E-model does not
need the access to the original signal to compute the quality. Therefore, it is the only available measure
which is computationally simple[36] and can be used in real-time applications. However, the E-model
was not designed as a quality assessment tool (as clearly stated in the recommendation defining it), but
as a network planning tool. The E-model provides the means to take several quality-affecting parameters
into account when designing a telephony network, most of which are more related to the field of signal
processing than to that of computer networks. For example, impairments due to packet losses have only
been explicitly included into the E-Model in the latest revision of the recommendation (dated from March
2003), and then only a uniform loss distribution is considered, which does not provide an accurate model
of packet loss on a big network like the Internet. Therefore, the assessments obtained by means of the
E-Model are to be considered in the appropriate context, and it is not surprising that they are not as close
to MOS tests as one would want[36]. Fig. 1, which is taken from[36], shows a scatter plot for the quality
evaluation given by this model with respect to MOS (cf.Fig. 4(b) for our model). Ideally, there should
be a one-to-one relation between the MOS values and the E-model’s output. However, as seen inFig. 1,
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there are strong variations. We observe that for a single MOS value, the E-model’s output has important
variations. For example, for MOS= 2.5, there are output values ranging from 20 to 80, while the entire
range of output is 0–100. In[10,18], the authors argue that the E-model is not yet suitable to correctly
consider the impairments caused by the transmission over a best-effort network and that more research
is needed to adapt it to this function.

To the best of our knowledge, there is currently no objective quality measure in the literature that can
evaluate speech signals distorted by both encoding and network impairments, in real-time and with good
performance.

3. Overview of the method

In this section, we describe the overall steps to be followed to build a tool in order to automatically
assess, and in real-time if necessary, the quality of speech transmitted over packet networks. The automatic
evaluation is performed by a suitable trained Random Neural Network (RNN).

We start by choosing a set of a priori quality-affecting parameters corresponding to the considered
applications and to the network supporting the transmission. Examples are the bit rate of the source,
the parameters corresponding to the redundancy used, the loss rate in the network, etc. Then, for each
parameterπ we must select a minimal value,πmin, a maximal one,πmax, and a set of representative, or
significant values in the interval [πmin, πmax]. For example, we will probably choose the percentage loss
rate as one of the key network parameters. If its value is expected to vary from 0 to 10%, and if the typical
observed values are between 0 and 5%, then we may use 0, 1, 2, 5, and 10% as selected loss rate values.

Let us denote by{π1, . . . , πP} the set of selected parameters. Let us then denote by{pi1, . . . , piHi
} the

set of possible values chosen for parameterπi (here,πmin = pi1 andπmax = piHi
). We callconfiguration

of the set of quality-affecting parameters, any set of possible values for each one. The total number of
possible configurations (that is, the number

∏P
i=1Hi) is usually large. We must then select a part of this

large cardinality set of configurations, which will be used as (part of) the input data for the NN in the
learning phase.

In order to generate a speech database composed of samples corresponding to different configurations
of the selected parameters, a simulation environment or a testbed must be implemented. This is used to
send media samples from the source to the destination and to control the underlying packet network.
Every configuration in the defined input data must be mapped into the system composed of the network,
the source and the receiver. Working with IP networks and speech streams, the source controls for instance
the bit rate, the packetization interval and the encoding algorithm; the routers’ behavior contribute to the
loss rate and the loss distribution, together with the traffic conditions in the network. The destination
stores the transmitted audio sample and collects the corresponding values of the parameters (that is,
the configuration). Then, by running the testbed or by using simulations, we produce and store a set of
distorted samples along with the associated configurations.

More formally, we select an audio sequenceσ, a set ofS configurations denoted by{γ1, . . . , γS} where
γs = (vs1, . . . , vsP), vsp being the value of parameterπp in configurationγs. From sequenceσ, we build
a setT = {σ1, . . . , σS} of speech samples that have encountered varied conditions when transmitted
and that constitute the “training part” of the database. That is, sequenceσs corresponds to the result
of sendingσ through the source-network system where the selectedP parameters have the values of
configurationγs.
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After building these samples, a subjective quality test must be carried out. There are several subjective
quality evaluation methods in the recommendations of ITU-T. In general, a group of human subjects is
invited to evaluate the quality of the samples (i.e. every subject gives each sample a score from a predefined
quality scale [Mmin,Mmax]). The subjects should not establish any relation between the samples and the
corresponding parameters’ values. After performing a screening and statistical analysis in order to remove
the grading of the individuals suspected to give unreliable results[42], the average of the scores given
by the remaining subjects to each sequence is computed; the average corresponding to sequenceσs is
denoted here byµs.

In the third and last step, a suitable RNN architecture and a training algorithm must be selected. The
samples database is divided into two parts: one of which is used to train the RNN and the other one to test
its accuracy (in thevalidationphase of the process). Once trained and validated, the RNN will then be
able to evaluate the quality measure for any given values of the parameters. Formally, the trained RNN
is seen as a functionf havingP real variables and with values in [Mmin,Mmax], such that

(i) for any sampleσs ∈ T, f(v1s, . . . , vPs) ≈ µs;
(ii) for any othervector of parameter values(v1, . . . , vP), the value off(v1, . . . , vP) is close to the

MOS that would be associated in a subjective evaluation to any media sample for which the selected
parameters had those specific valuesv1, . . . , vP .

Once the three steps described above are completed successfully, we implement the final tool, which is
composed of two modules: the first one collects the values of the selected quality-affecting parameters
(based on the network state, the codec parameters, etc.). These values are fed into the second one, which
is the trained RNN that will take the given values of the quality-affecting parameters and correspondingly
computes the MOS quality score.

3.1. On the Random Neural Network model

Let us briefly describe the mathematical structure of the RNN model[20,30,31,34]. An RNN is an
open Markovian queuing network with positive and negative customers. These models are also called
G-networks[20,21,23]. The RNN we use here is a particular case of a G-network. Each neuron behaves
as a./M/1 queue processing units in, say, FIFO order (even if this is not actually essential). The server
rate at neuroni is denoted byri and, after leaving neuron (queue)i, a customer leaves the network with
probability di, goes to queuej as a positive customer with probabilityp+

ij and as a negative customer
with probabilityp−

ij . Customers arrive from outside at neuroni as positive ones, according to a Poisson
process with rateλ+

i . In our RNN, no negative customers arrive from the environment. If a customer
goes fromi to j as a negative one, when it arrives at queuej it kills the last customer at the queue (if
any), and it kills itself in all cases. Transfers between queues are, as usual with queuing network models,
instantaneous. The previously described dynamics thus means that at any point in time, there are only
positive customers in the queues. It has then been shown[21,23]that when the associated vector Markov
processNt = (N1

t , . . . , N
M
t ), whereNit is the number of customers in queuei at time t andM is the

number of nodes, is stable, its distribution is of the product-form type: in equilibrium, that is, in the
stationary case:

Pr(Nt = (k1, . . . , kM)) =
M∏

i=1

(1 − �i)�kii .



S. Mohamed et al. / Performance Evaluation 57 (2004) 141–161 147

Factors�i are, as usual, loads in the queuing terminology:�i is the probability that queuei is not empty
(under the stationary distribution). When the system is seen as a Neural Network, the backlogNit of queue
i at timet is called thepotentialof neuroni at t.

We use the network as a statistical approximator (it “learns” how to evaluate the quality of audio signals
as humans do). As an approximator, its input is the vector� = (λ+

1 , . . . , λ
+
M) and the output is the vector

� = (�1, . . . , �M). Observe that as a G-network, that is, as an open queuing network, we usually consider
as the output process the flows of customers going out of the set of nodes; for instance, the mean rate of
customers leaving the network from neuroni is �iridi.

The loads are obtained by solving a non-linear system of equations built using the data composed of
the service rates and the routing probabilities (this follows from the product-form result). If we denote
w+

ij = rip+
ij andw−

ij = rip−
ij , the non-linear equations to solve are

�i =
λ+
i + ∑M

j=1 �jw
+
ji

ri +
∑M
j=1 �jw

−
ji

.

Thew∗
∗ factors are calledweightsas in the standard Neural Network terminology, and they play a similar

role in this model. More specifically, our training data is composed of the set of pairs(vs, µs)s=1,...,T, with
vs = (v1s, . . . , vP,s). What we want is that the G-network behave in the following way: it must haveP

input neurons, one output one, and when the rate of the arrival flow (of positive customers) at neuroni is
λ+
i = vi,s, then the occupation rate of neurono is�o ≈ µs. To do this, consider the output�o as a function

of the set of weights, that we denote here byw, and of the input rates�+, and we write�o(w, �+). Then,
we look for a set of weightsw0 defined by

w0 = argminw
1

2

S∑

s=1

(�o(w, vs)− µs)2

the minimization taking place on the set of positive multidimensional vectorsw∗
∗. This optimization

problem can be solved used standard techniques as gradient descent (observe that we are able to compute
any partial derivative of the output, using the non-linear system of equations satisfied by the occupation
rates).

An interesting observation for the reader familiar with standard Neural Networks, is that the “knowledge”
of the RNN, once trained, is stored in the set of weights, as in the standard case, but here the weights
are mean frequencies of the signals sent by a neuron to the others, which appears to be closer to the
functioning of real nervous systems.

In learning applications as in ours, it is usual to usefeedforwardtopologies (in the associated G-network,
a customer cannot visit more than once any given queue). We use here this class of model. In such a
case, the output is a rational fraction in the input variables (and also in the weights), that is, it is the ratio
between two multi-variate polynomials in the variablesλ+

1 , . . . , λ
+
M . This means that its computation is

straightforward, and the same for its derivatives. This in turn leads to efficient learning procedures. For
details, see[20–23].

In our RNN there areI neurons receiving positive customers from outside (following[22] we set all
external negative flowsλ−

i to zero). Let us callI this set of neurons. Each external flow corresponds to
one of the selected parameters being part of the analysis, andλ+

i is theith parameter’s value. There is
only one neuron, denoted here byo, sending customers out of the network. Between this output element
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and the set of input neuronsI, there is a set ofH neurons, calledhiddenneurons, receiving flows from
the setI and sending customers to neurono. Finally, there is no connection betweenI ando. We have
that for alli ∈ I, �i = λ+

i /ri, then, for allh ∈ H:

�h =
∑
i∈I(λ

+
i /ri)w

+
ih

rh + ∑
i∈I(λ

+
i /ri)w

−
ih

and finally

�o =
∑
h∈H �hw

+
ho

ro + ∑
h∈H �hw

−
ho

,

the stability conditions being that for every neuronj we have�j < 1. A sufficient condition for this is
that for any input neuroni ∈ I, λ+

i < ri, that for any hidden neuronh ∈ H we haverh ≥ I and, finally,
that we havero ≥ I. In practice, we observe that the number of iterations needed in the learning phase
are sensitive to the effective values of these parameters, and that often much smaller values are used.
Also, it is efficient to scale the inputs and to consider that for everyi ∈ I we have 0≤ λ+

i ≤ 1. As a
last observation, observe that once trained, the computation of the network output is a fast process: for
instance, it involves exactly 2HI + 3H + I + 1 products (in our models,I = 6 andH is less than 15).

4. Network parameters

It is well known that network losses play a major role in the perceived quality of a multimedia stream
[7,56,60]. It is therefore important to understand how network losses happen, and take this behavior into
account when experimenting.

Several authors[2,7,56,60]propose different mathematical models for the Internet’s packet loss process,
ranging from very simple ones (e.g. assuming independent losses uniformly distributed in time) to more
complex structures (e.g.nth order Markov chains). Many authors agree that relatively simple models,
such as a two-state homogeneous Markov chain,2 provide a good approximation of the packet loss process
[2,8,56,60].

4.1. Measurements

We have studied several loss traces collected by Moon and co-workers[60]. These traces were taken
over a period of several days, and under different conditions (national and international links, different
packet sizes, unicast and multicast transmissions). We found the loss rates of these traces to be quite low
(approximately between 1.7 and 5.5%) and the average loss burst sizes were between 1 and 5 packets.

We have used the studied traces to calculate the parameters of a two-state Markov model with two
degrees of freedom (cf.Section 4.2) and then used the calibrated model to generate simulated traces. We
found that the simulated loss processes were statistically similar to the real traces (even when comparing
second order moments), so we decided to use this model for our experiments.

2 This model, which we present in detail inSection 4.2is often mistakenly called Gilbert model. In fact, the real Gilbert model
[35] is slightly more complex.
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4.2. The network loss model

Previous studies on the impact of network losses on VoIP quality sometimes use very simplistic loss
models, such as assuming that losses are practically independent[6], or assuming packet loss bursts of
a fixed size[37,51], which is not accurate. It has been stated[2,8,56,60]that a simplified Gilbert model
provides a good approximation of the packet loss process as it happens on a big network such as the
Internet. We chose this simpler model over the original Gilbert model[35], since it allows us to reduce
the number of parameters required to tune it. Instead of the three parameters required for the Gilbert model
(the two transition probabilities and the probability of an error occurring in the “Bad” state), we used
only two probabilities to drive a two-state Markov chain. This model also provides a good approximation
of the loss process (cf.[2,56,60]for details), and by having only two parameters, it reduces the number
of configurations to evaluate during the subjective tests.

In the model used, each transmitted packet deals with one of two possible results: either the packet
arrives successfully at destination or it does not (either because some of its bits are corrupted or, more
likely, because it is dropped by a router, or because it arrives out of time, etc.) The first event is coded
by ‘1’ and the second one by ‘0’. In this last case, we say that the packet is lost. Let us denote byXn the
result of the transmission of packetn, for n ≥ 1. The sequenceX = (Xn)n≥1 is then considered to be a
Markovian homogeneous stochastic process, thus with values in{0,1}, and we denote

Pr(Xn+1 = 1|Xn = 0) = p,
Pr(Xn+1 = 0|Xn = 1) = q.

In words,p is the probability of a packet being lost when the previous transmission was correct, and 1−q
is the probability of losing a packet when the previous transmission was not correct.

Let us now denote by BS the size of aburst of losses, that is, a sequence of consecutive losses not
strictly included in another burst of losses. Since the holding times ofX are geometrically distributed,
we have

Pr(BS = k) = (1 − q)k−1q, k ≥ 1.

If MBS is the mean size of a burst of losses, we then have MBS= q−1.
Now, if PER is the Packet Error Rate, that is, if PER is the (unconditional) probability of losing a

packet, we have

PER= π1p+ π0(1 − q),
where(π1, π0) is the stationary distribution ofX, giving PER= π0 (as expected), and so

p = q PER

1 − PER
.

Assume now that we analyze a long trace, and that the PER is measured together with the average of the
bursts of losses, and denote the obtained values PERm et MBSm, respectively. If the parametric model
described above is chosen to explain these observations, we have

p = 1

MBSm

PERm
1 − PERm

, q = 1

MBSm
.
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See that if there are losses (at least one) and if not every transmission is a loss, then necessarily MBSm > 1
and 0< PERm < 1, leading to 0< p, q < 1.

4.3. Other network parameters

The delay and jitter in the network are two other important parameters to consider when evaluating
real-time speech quality. End-to-end delay plays an important role in interactive (i.e. two-way) applica-
tions, since high delay values hinder the conversation[38]. However, for one-way applications, the delay
is less relevant in most cases. As we did not consider interactivity for the tests we carried out, end-to-end
delay was not considered as a quality-affecting parameter.3

Jitter, on the other hand, plays an important role in both types of applications, and its effects are similar
to those of packet loss. If a dejittering buffer[15] is implemented, the effect of jitter is reduced, and from
the point of view of the application, the effect of jitter can be translated as extra network losses.4 This
was the case in our experiments.

Finally, for interactive applications, the echo effect should also be considered, and an echo suppression
or cancellation mechanism should be implemented[17]. For a complete discussion for packet loss, delay,
jitter and associated recovering mechanisms, see[7].

5. Description of the experiments

In order to train the Neural Networks, we developed a database of subjective test results (MOS scores)
for different speech samples transmitted under different conditions.

The distorted samples were generated using the Robust Audio Tool (RAT)[49], over a LAN in which
we generated losses according to our loss model (cf.Section 4.2). Using a LAN context as a testbed
to generate the distorted samples allowed us to control precisely the network parameters, which would
have been much harder, or even impossible, in a larger network. RAT has been developed as part of a
research project, and has proved itself very useful in the experiments undertaken. It has many encoding
options, and it is based in the Mbus architecture[41,50]. This allowed us to automate the generation of
the degraded sequences by means of a small Mbus application written in Java and a few Ruby scripts,
without needing to modify a single line of RAT’s code.

The losses in the network were generated with a modified version of Orion Hodson’s packet reflector
[54], which we adapted to work with our loss model. As this software can be controlled remotely, we had
the same application that drove RAT set the loss parameters for the reflector.

We considered six parameters which affect the perceived speech quality, two of them concerning the
network, and four others concerning the encoding schemes used. The network parameters that we used
were the loss rate (LR), and the mean size of loss bursts (MBS, for Mean Burst Size). These parameters
are enough to set those of the loss model used. As for jitter, its effects can be considered as network
losses, since RAT implements a dejittering buffer. As a side note, both delay and jitter were negligible in

3 Although it can be considered if need be (e.g. for evaluating the quality of two-way VoIP). In that case, we must add it to the
list of parameters, control it while generating the training database, measure it when our method is in operation, etc.

4 As packets that arrive after some expiration time are considered as lost.
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our testbed, and so it is safe to say that the only network losses seen by RAT after the dejittering process
were those that had actually happened at the network level.5 We used four values for the LR (2, 7, 10 and
15%) and three values for the MBS (1, 1.7 and 2.5 packets).

For the encoding, we considered the following parameters:

• Codec—the primary codec (16b linear PCM, and GSM).
• Redundancy—the secondary codec (GSM), if any.
• Redundancy offset—the offset, in packets, of the redundant data (we used offsets of 1 and 3 packets

for the Forward Error Correction (FEC) scheme presented in[8,40],6 which is the default in RAT).
• Packetization interval(PI)—the length (in ms) of audio contained in each packet (we considered

packets containing 20, 40 and 80 ms).

These six parameters give place to many possible configurations, even when using just a few values for
each one, so we chose the values used so as to have a reasonable number of sequences to assess, but at
the same time, to have enough data to train the Neural Networks.

We chose about half of the 216 possible valid configurations for those values, concentrating on higher
quality encodings (Linear-16 PCM as the primary codec) and small (20 ms) packets, and ended up with
112 configurations to test.

Twelve original samples were used to generate 112 four-sequence groups, one for each of the configu-
rations considered. This is in accordance with[44]. The original sequences were sampled at 8 kHz (16b,
mono) and their contents were unrelated. Half of them were male voices and the other half were female.
The four samples in each group were chosen randomly between the original ones, and then transmitted
with RAT over our test network in order to affect their quality as it would be affected by normal usage
of such a tool. Finally, three hidden reference groups (original samples and very degraded ones) were
added to the test, in order to help detect subjects who could not conduct proper evaluations, and to add
dynamism to the test’s scale.

The results obtained were screened to eliminate subjects that produced erroneous values, and so from
the 17 subjects that originally performed the test, 16 results were used to calculate the MOS, as one was
rejected during the screening process. The screening method used was theβ2 test, in accordance to the
ITU recommendations followed[44].

We then used randomly chosen subsets of the screened results to train several Neural Networks, and
the rest of the results to validate the trained networks.

6. Results

In this section, we present the results obtained, which are of two kinds. Firstly,Section 6.1presents an
analysis of the Neural Networks’ performance as subjective quality estimators, and secondly,Section 6.2
shows how, according to the estimations, the parameters considered affect the quality as it is perceived
by a human subject.

5 That is, there were no lost packets due to the jitter.
6 From now on, when we talk about FEC, we will be referring to this FEC scheme.
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Fig. 2. Example of a 3-layer RNN architecture (simplified schematics).

6.1. Performance of the neural networks

We conducted experiments with several Neural Network architectures, and with different sizes of
training databases.

The architectures used for the networks ranged from simple 3-layer designs (Fig. 2) to more complex
ones, with several hidden layers and feedback between neurons. We did not observe any significant vari-
ation in performance by modifying the architecture. However, the complex architectures showed a small
advantage in convergence time over the simpler ones during the first hundred iterations of the training.
Fig. 3 shows these differences. Convergence time is not really important for this type of application,
as the training is only done once. We believe, however, that better performances (both in the learning
process and in the estimation) can be obtained by using a different training algorithm (we used a gradient
descent method for our experiments), and taking into account the possible relationships between different
parameters (e.g. loss rate and loss Mean Burst Size) when designing the Neural Network.

We used some configurations unknown to the trained networks (that is, not used during the training
phase) to verify their accuracy.Fig. 4 shows the results given by a 3-layer network trained with 92
configurations when faced with the 20 configurations reserved for this validation phase. We also compared
the results obtained with some of the human subjects’ evaluations, and found the RNN estimation’s
distance7 from the MOS to be generally smaller than those of the subjects.

7 Measured as the mean square error.
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Fig. 3. Convergence speed for two different Neural Network architectures (normalized values).

We obtained similar results when using only 56 configurations to train the network, and the other 56
to test it. The mean square error for that case was very similar (≈0.23), but there were some outliers.

As for the correlation coefficient, we found it to be dependent on the number of configurations used
for the testing, and it was in the 0.71–0.93 range (the lowest value being for the 56-configuration training
set, and the highest one for a 102-configuration one). We found that the performance of the RNN was

Fig. 4. Estimations for 20 unknown (randomly chosen) configurations.(a) Estimation and MOS for 20 configurations used for
validating the RNN. (b) Scatter plot for the same 20 configurations considered in (a) (MSE≈0.21).
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Fig. 5. Perceived quality as a function of LR and MBS.

good even when using a very small number of training configurations, which is good, since the main cost
of our approach resides in the number of subjective evaluations to be made.

6.2. Effects of the different parameters on the perceived quality

In this section, we put forward our results concerning the influence of the encoding and the network
conditions on the quality as perceived by the end-user. To this end, we used a previously trained Neural
Network (trained with a 92-configuration set) to estimate the quality of the speech samples under a number
of different combinations of encoding and network parameters.

6.2.1. LR and MBS
Let us start by looking at the quality of the received voice stream when the loss rate and the mean

loss burst size vary, and the other parameters remain constant. We considered LR values ranging from
1 to 20%, and MBSs ranging from 1 (i.e. mostly independent losses) to 3. The codec used was PCM
Linear-16, and packet size was 20 ms.Fig. 5shows the evolution of quality as a function of the network
loss rate and the MBS, with and without FEC.

We observed that the fact of using FEC produced an improvement of about one MOS point in the
perceived quality. We also verified that when there is no error correction, an increase of the MBS has
a slightly positive effect on quality, since there are fewer loss episodes (this had already been noted in
[37]). As expected, the FEC scheme used suffers a significant degradation when the MBS is increased,
since in this case, more redundant packets are lost in the same loss episode that the original ones.

6.2.2. MBS and redundancy offset
Having seen how the MBS affects the performance of the FEC scheme used, it is interesting to see

how much does modifying the offset of the secondary encoding improve the perceived quality. For that,
we studied the evolution of quality as we varied the MBS and offset parameters. The results are shown
in Fig. 6.
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Fig. 6. Variation of perceived quality as a function of MBS and FEC offset (an offset of 0 means that no FEC was used).

We can see that the curves are quite similar regardless of the loss rate, though there is a one point
overall difference for the two loss rates considered. As inFig. 5(b) we can see that the quality degrades
as we increase the MBS. However, we can achieve a significant improvement in quality by increasing the
offset of the FEC payload. Again, we observe that when no FEC is used, increasing the MBS produces a
slight improvement in quality. It should be noted that although using high values for the redundant data
offset counters the effects of high MBSs, it also introduces more delay to the transmission, which may
decrease the perceived quality for interactive applications, even if the sound quality is better.

6.2.3. MBS and PI
Another interesting aspect to consider is how does the packetization interval affect the quality of the

speech streams, under various MBSs. We found that increasing the PI produces an improvement in quality,
whether FEC is being used or not, and independently of the MBS size. We have not found an explanation
for this phenomenon in the literature, but we believe that it is due to a lower number of loss episodes being
produced. This is reasonable, since when using longer packets, we have fewer ones, and thus, fewer loss
episodes. This is interesting, because it allows to have an acceptable8 quality without adding redundant
data, even with relatively high values of LR and MBS. Increasing the PI also produces a better network
utilization, since there is less header overhead, and does not affect the performance of the FEC scheme
used.Fig. 7shows the results we obtained.

This may not be applicable under certain circumstances, for example, in applications where minimizing
the delay is critical, or where receiver-based loss concealment techniques such as waveform interpolation
are used, in which case a smaller value of PI may be preferred.

6.2.4. LR and PI
To further understand the effect of packetization interval on speech quality, we studied the quality

variation as a function of PI and LR, in order to determine in which situations an increase in PI is a good

8 Close to 3 points in the 5 point MOS scale.
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Fig. 7. Variation of the perceived quality as a function of MBS and PI (without FEC).

Fig. 8. Variation of the perceived quality as a function of LR and PI (MBS= 1.3 packets).

option for improving quality.9 We found that we can get near-toll quality without FEC at 5% of packet
losses, which we believe to be interesting.Fig. 8shows the results obtained.

We can see that the influence of PI is stronger for low values of LR (almost one MOS point for
LR = 1%), and it decreases as the loss rate increases. At LR= 8%, the quality is about 2.5 MOS points,
which is not bad considering no error correction is being made. When using FEC, on the other hand, the
improvement brought by the increase of PI is not so evident, but it is still there.

6.2.5. Codecs and speech quality
While the purpose of our study was not the comparison of the codecs’ performances, we did study

whether the codec used had an important influence on the way the other parameters affect quality. We

9 We must still consider the remarks made about delay on the previous section.
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Fig. 9. The perceived quality as a function of MBS, for both PCM and GSM (LR= 2%, FEC= (GSM− 2)).

found that the evolution of quality as a function of the network and redundancy parameters is very similar
for both GSM and PCM Linear-16.

We did find, however, that when the network conditions degrade, the difference in quality between both
codecs tends to diminish.Fig. 9shows an example of this situation. This difference may be due to GSM
being a frame-based codec and PCM being a sample-based one. Frame-based codecs can extrapolate
missing data from the decoder’s state, and so they may behave better than sample-based codecs under
certain network loss conditions. This issue is the subject of current research in our group.

7. Applications

This section aims to present some examples of possible applications of the tool presented in this paper,
some of which are the subject of current research.

7.1. Quality control

Probably the most obvious application of being able to quantify the quality as perceived by human
subjects as a function of network and coding parameters, is to control it. Attaching a trained RNN to a
streaming media player, or a teleconferencing application would allow to optimize the perceived quality by
controlling the coding parameters according to the current network state. Moreover, in a near future when
network QoS architectures such as DiffServ become widely available, our tool will help in controlling
packet marking, or in negotiating with the network in order to improve transmission quality. Even though
in this study we considered only one-way applications, the approach is valid for interactive ones as well,
and so other network parameters, such as delay and jitter could also be considered for optimization.

7.2. Pricing

As more real-time multimedia applications become commonplace, the current best-effort Internet ar-
chitecture is likely to change into a multi-class QoS architecture, in which real-time packets will be treated
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differently than bulk transfer ones. This will surely imply new pricing schemes, as flat-rates (which are
probably the most common ones nowadays) will not be appropriate for this kind of service.

It is likely that the new pricing models will include some form of Service Level Agreements (SLA)
which guarantee that the client will receive a minimum quality for the service he is paying. In this context,
it is possible to use the approach presented here to verify that the QoS is indeed within the levels specified
by the SLA.

Another interesting point which is currently being studied is the adaptation of this method to estimate
utility functions, rather than just quality. This would be useful for designing and testing new pricing
schemes for QoS-aware networks. Utility functions are monetary valuations of any given product or
service, i.e. how much money does the clientfeelthat the product or service is worth. Thus, it is important
that the perceived utility be well known before establishing a new pricing scheme.

8. Conclusions

This paper proposes an analysis of the combined effect of several quality-affecting parameters on the
perceived quality of real-time speech streams sent over a packet network with no provisions for QoS.
The proposed approach can be used to analyze the effects of any measurable parameter on the perceived
quality of the stream. The goal of this analysis is to help in the understanding of the behavior of real-time
speech streams transmitted over a best-effort network such as the Internet. This may be used, for in-
stance, in developing control mechanisms allowing the delivery of the best possible speech quality given
the current network state.

Our method aims to overcome the limitations of the available quality measuring techniques in the
literature, and it presents several advantages over them: (i) the results obtained correlate well with human
perception; (ii) it is not computationally intensive; (iii) it can be used in real-time applications; (iv) some
parameters that cannot be easily taken into account by the traditional methods are easy to consider using
our approach. To the best of our knowledge, no other approach can currently solve the same problem and
achieve the same performances.

Although we based our study on IP networks, analog studies can be done for ATM and wireless
technologies as well (the specific type of packet technology has no effect on the relevance of the method
we discuss here). Some future research directions for this work include the study of other codecs and
parameters (for instance, explicit analysis of jitter effects), two-way interactive sessions, and the extension
of the RNN-based quality evaluation approach to general multimedia streams.
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