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Abstract—Markov reward models are commonly used in the
analysis of systems by integrating a reward rate to each system
state. Typically, rewards are defined based on system states and
reflect the system’s perspective. From a user’s point of view,
it is important to consider the changing system conditions and
dynamicity while the user consumes a service. In this paper,
we consider online cloud gaming as use case. Cloud gaming
essentially moves the processing power required to render a game
away from the user into the cloud and streams the entire game
experience to the user as a high definition video. According to
the available network capacity, the video streaming bitrate is
adapted. We conduct experiments on Google Stadia and provide
a Markov model based on the measurement results to investigate
a scenario where users are sharing a bottleneck link.

The key contributions are proper definitions for (i) system-
centric reward and (ii) user-centric reward of the cloud gaming
model, as well as (iii) the analysis of the relationships between
those metrics. Our key result allows a simple computation of the
user-centric rewards. We provide (iv) numerical results on the
trade-off between user-centric rewards and blocking probabilities
to access the online cloud servers. We use Kleinrock’s power
metric to identify operational points. This work gives relevant
and important insights in how to integrate the user’s perspective
in the analysis of Markov reward models and is a blueprint for
the analysis of other services beyond cloud gaming.

Index Terms—Markov reward model, cloud gaming; Quality
of Experience (QoE), user-centric reward

I. INTRODUCTION

It is common practice to use Markov reward models to
analyze the utility of a system. Markov models provide the
system state probabilities x(i) = P (X = i). The reward per
state ri is then considered when evaluating the expected
reward of the system. This is mainly a system-centric point of
view, since the system state and the corresponding reward is
considered:

∑
i x(i)ri is the expected (system-centric) reward.

The reader should note that although the rewards may reflect
user-centric utilities (e.g. available video bitrate in that system
state, and hence video quality), the analysis is nevertheless
system-centric, as opposed to user-centric.

From a user-centric point of view, it is important to under-
stand that the QoE of a user is determined for the entirety of
the session the user is consuming. A good example of this is
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over-the-top adaptive video streaming; as network conditions
change, the video bitrates are adapted to the networking
situation. Naturally, the QoE is impacted by those bitrate (i.e.,
system) changes. For a user-centric evaluation of systems, we
need to be able to quantify therefore the reward reflecting the
QoE of the user. From a system-centric perspective, we would
consider the probability that the system serves all customers
with a certain bitrate. It is more complex to analyze the user-
centric reward instead of the system-centric reward.

As a use case in this paper, we consider cloud gam-
ing, concretely, Google Stadia. The cloud servers implement
admission-control on the application layer; if the available
bandwidth is below a certain threshold (10Mbps), then a
user is not allowed to enter the system. This is reasonable, as
the QoE would be not sufficient for a good user experience.
Depending on the available bandwidth, Google Stadia delivers
the video contents to the users in higher resolutions and higher
video bitrates. Our contribution builds upon a measurement
study on Google Stadia and is the user-centric Markov reward
model for such a service. We consider the research questions:

• How to analyze user-centric reward models in order to
understand system-level performance?

• Is there a significant difference between system-centric
and user-centric views in practice for realistic cases?

Section II provides background on Markov reward models,
as well as cloud gaming QoE. Section III discusses our
measurement study on Google Stadia. Section IV provides
the modeling framework for user-centric rewards. Section V
presents definitions for the expected system-centric reward. In
addition, we show how the accumulated system-centric reward
is related to the expected system-centric reward of an individ-
ual user. Section VI defines the expected user-centric reward
for cloud gaming. The key contribution of this paper is then
the derivation of closed formulas for the expected user-centric
rewards. We will show the relation between system-centric and
user-centric rewards for cloud gaming. Section VII presents
numerical results and gives answers to the research questions
above. We show the potential of the Markov reward model to
investigate different implementations of cloud gaming and to
find operational points in practice. Section VIII concludes this
work and gives an outlook on relevant future work.



II. BACKGROUND AND RELATED WORK

A. Background on Reward Models

Markov reward models are commonly used in literature
to analyze communication networks and distributed systems.
The authors of [1] use Markov reward model to analyze the
availability of systems which are modeled as continuous-time
Markov chains (CTMC). Each model state of the CTMC
corresponds to a system state. Then, the Markov reward
models associate a non-negative real-valued reward rate with
each state. The stochastic process {X(t), t ≤ 0} describes
the system at time t with a state probability vector X (t). The
corresponding reward rates per state are summarized in the
reward vector R. The measures of interest are the expected
(instantaneous) reward of the system at time t and especially
in the steady-state. Accumulated rewards [2] are also relevant,
e.g. to capture availability of systems in terms of the expected
accumulated reward for finite intervals of time or the expected
time-averaged accumulated reward over an infinite time inter-
val [3]. For accumulated rewards, the time δi in a state i with
reward ri is considered and the accumulated reward is then
riδi. With proper definitions for reward rates, the performance,
QoS, utility, performability, reliability, etc., of systems can
be investigated [3]. For example, Markov reward models are
used for the analysis of cloud computing [4], networks-on-
chips [5], safety critical systems such as smart grids [6],
vehicle-to-infrastructure communications [7]. For the analysis
of network survivability [8], reward models are also essential
e.g., the survivability of telecommunication network systems
under fault propagation [9]. Recently, Markov reward models
have also been used with different focus, e.g., to analyze
whether small solar panels can drastically reduce the carbon
footprint of radio access networks [10]. In this work, we shift
the focus towards the QoE of a user of a service.

The Markov reward models above have in common that the
system is analyzed with different measures and reward rates.
This lies in the nature of the Markov model describing the
system state and the assignment of rewards to system states.
However, we are interested in analyzing a system from a user-
centric perspective. In our cloud gaming use case, we consider
a system with a shared bottleneck link. Accordingly, the video
bitrate received by the player from the cloud rendering the
game is a proper reward rate to take into account the user-
perspective. Nevertheless, the Markov model still reflects the
system state and common measures like the expected reward
or the expected accumulated reward do not explicitly take into
account an individual user. Our goal is quantify the expected
user-centric reward which takes into account the changing
system conditions and the dynamicity of the system while the
user consumes the service.

In our previous work [11], we have used a Markov reward
model to analyze the QoE of online authentication services
considering the impatience of users. The access to online
services such as shopping carts, online banking, online authen-
tication, web, etc., is considered. The user requests an online
authentication service, and may have to wait until the request is

served due to limited resources. However, during waiting, the
user may decide for abandonment due to impatience. The QoE
of an user is mainly shaped by the waiting time of that user,
which is in turn determined by the system state when the user
arrives at the system (assuming FIFO scheduling discipline).
For the cloud gaming use case, the analysis is much more
complex, because the state in which a customers arrives is not
sufficient to determine the QoE. We need to take into account
the changing system conditions of the system while the user
consumes the service due to adaptive video bitrate streaming.

The modeling framework of this paper can be also applied
to the QoE analysis of other multimedia and Internet services.

B. Background on Cloud Gaming

Cloud Gaming is intended to remove the need for end-users
to have high-powered rendering hardware at their disposal in
order to play a video game. Local user input is transmitted to
the cloud where the entire game experience is rendered and
subsequently delivered back to the user via video streaming.
There are several advantages, both practical and economic, to
this approach for players and game developers alike.

So why is Cloud Gaming not already the prevalent form
of consuming games in 2020? The two main reasons for
that can be found in operational costs of a Cloud Gaming
platform as well as network quality. When OnLive made the
first attempt to commercialize the concept in 2010 the cloud
concept in itself was not yet in the mature state it is in today,
and the operational costs, along with network issues, made
the service non-viable. Fast-forward to today and things have
changed considerably. The improvements in hardware and
Cloud services, along with the ongoing deployments of better
access technologies like 5G networks as well as the recent
trend towards edge computing will further serve to mitigate
the technological hurdles for Cloud Gaming.

Nonetheless, Cloud Gaming remains one of the most de-
manding applications for networking today due to its high
bandwidth and low latency requirements. This is where mecha-
nisms for QoE optimization come into play and understanding
them is key to improve overall network performance and in
turn, QoE.

C. Cloud Gaming QoE

For the Markov reward model of online cloud gaming, we
want to utilize a QoE model to define proper user-centric
rewards. However, there is no commonly accepted QoE model
for cloud gaming so far, although several works investigate
QoE and QoE influence factors for online cloud games. [12]
gives an introduction to online video games including cloud
gaming and summarizes QoS and QoE influencing factors.
Due to the streaming component, the network bitrate and
the resulting video bitrate as well as other video quality
metrics are relevant QoE influence factors. [13] reviews QoE
in cloud gaming models and also identifies bitrate as a
crucial parameter of QoE. [14] investigates the video quality
of commercial cloud gaming services of the first wave in
2013. [15] evaluated the impact of delays and packet loss



on the QoE. [16] conducted subjective experiments on cloud
gaming and found that cloud requires a certain minimum
network bandwidth to maintain an acceptable visual quality,
but increasing the bandwidth beyond a certain threshold did
not lead to a significant increase in QoE. [17] examined
different video qualities and video bitrates and found that
their test subjects experienced higher flow and immersion for
high video quality. [18] conduct subjective QoE studies and
provide QoE estimation models as functions of video bitrate
and frame rate depending on the game type and player skill.
Similarly, [19] quantified the impact of frame rate and bit rate
of cloud gaming QoE. However, no commonly accepted QoE
models exists so far. As of this writing, there are various on-
going ITU-T standardization activities targeting gaming QoE,
e.g. ITU-T Rec. G.1072 (G.OMG) aiming at predicting cloud
gaming QoE, which are summarized in [20].

From the literature, we conclude that the video bitrate a user
experiences during a cloud gaming session is the most crucial
QoE influence factor in this work. Thus, our reward model
needs to consider the video bitrate of an individual user.

III. CLOUD GAMING MEASUREMENTS: GOOGLE STADIA

Google Stadia uses the WebRTC protocol at the application
layer to transmit real-time audio and video from the game
rendering server to the user’s client. The WebRTC payload is
carried by a QUIC connection consistently using UDP port
44700 on the server side during our measurement campaign.
A second QUIC connection is established using UDP port
44732, that carries the control inputs from the client to the
server. Video encoding is selected based on the capabilities of
the client, its screen resolution and quality of the connection
between client and server. Stadia has a preference for Google’s
VP9 codec, if a VP9 decoder is present in hardware at the
client, otherwise it defaults to the H.264 codec. The highest
supported screen resolution is 3840x2160. A frame rate of
60 frames per second is maintained in all cases to ensure
responsiveness.

A. Measurement Setup

The measurements were taken on an off-the shelf PC
running Windows 10 with the game client running Google
Chrome to access the Stadia service. Wireshark was used to
capture the traffic. The PC was connected to a TP-Link Archer
7 AC1750 V2 router running OpenWRT 19.07 that doubled
as the uplink router as well as network emulator. The built-in
user-space tool tc-netem was used to interact with OpenWRT’s
Linux kernel packet scheduler and introduce artificial delay
and packet loss. A fairly consistent 10ms round trip time (RTT)
was observed by constantly pinging the game server during an
active session without impairments.

B. Results

A goal of the measurement study was to determine the
quality of service limits under which the Stadia service could
still function. However, Google actually preempts this deter-
mination by performing a connectivity check, i.e., an active

measurement between client and server, before a new session
is started. If the check fails, the users are denied access to the
service. We experimentally determined the minimal quality
requirements for the service to work for each dimension
individually. In terms of delay, an RTT of 75ms at most is
tolerated, while a minimum bandwidth of 10Mbps is required.
Introduced packet loss from client to server was accepted up
to a limit of 35% and up to 15% in the opposite direction.

Figure 1 shows the throughput measurements over time of
an example 150 s long run using a 1920x1080 screen without
artificial impairments on the connection. The game in this
particular measurement was Shadow of the Tomb Raider. The
figure illustrates the different phases of a Stadia game session.
From 0 s until about 15 s the connection test is performed.
10Mbps probes are sent from server to client (labeled ‘check
down’). Only about 0.2Mbps are sent in the opposite direction
(‘check up’). Afterwards what we have dubbed the ”interactive
phase” starts and runs until the end. Here the two QUIC
connections are reflected: WebRTC connection for video and
audio in downlink (‘stream down’) and uplink (‘stream up’).
The control connection throughput is nearly constant through-
out the run duration varying between 1 kbps and 2 kbps in
both directions. The throughput pattern shown for the WebRTC
session is entirely specific to this game session as it depends
on the user’s input and what is actually shown on the screen as
Stadia adapts the video encoding to the content. We observe
an initial ramp-up of downlink traffic to just below 30Mbps
after the connection check is passed. However, it quickly
drops again to less than 1Mbps at 25 s. This is due to the
static content being presented to the user here, i.e., the game
developer’s and publisher’s logos, while the game is loading.
We ramp up again to almost 30Mbps once the game menu is
reached. However, that spike only lasts until an actual game is
started from the menu. The throughput is then quickly reduced
to just below 1Mbps during the loading of the gameplay
sesion as once more only a semi-static loading screen is
displayed. From the throughput pattern we can derive how
long it took the Stadia server to load the game, i.e., about
70 s. What follows is the interactive gameplay phase where the
throughput jumps back up to just below 30Mbps. Gameplay
is stopped by the user after 30 s. Once again this is followed by
a brief loading screen and corresponding drop below 1Mbps
throughput as well as subsequent ramp up when entering the
menu where the user ends the session at 150 s.

In Figure 2, we now switch to a 4k resolution screen
and focus on the throughput of the WebRTC connections
exclusively. The game played in this session is GRID. The
uplink traffic throughput displays a similar behavior as in the
previous session, staying between 0.2Mbps and just below
1Mbps throughout the session depending on the content
transmitted. This is not surprising as the uplink of the We-
bRTC connection mainly carries acknowledgements. In the
downlink connection we observe two main differences. First
the throughput pattern is different over time as the user is
presented with different content. GRID uses animations and
videos rather than static screens during loading phases and this
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Fig. 1: Example of throughput measurements of Google Stadia
without any impairments and a resolution of 1920x1080.
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Fig. 2: Example of throughput measurements of Google Stadia
without any impairments and a 4k resolution.

is reflected in the throughput. The second difference lies in the
sustained throughput during the gameplay in the interactive
phase. The 4k video transmission now requires just below
45Mbps compared to the 30Mbps of the previous session.

In Table I, we give the measured mean throughput results
for multiple runs in four scenarios for the gameplay phase.
The first two columns represent the 4k and 1080p session
types without connection impairments we have discussed in
Figure 2 and 1. The third column represents a scenario with
added delay and a 75ms RTT overall, which was the highest
latency tolerated by the connection check. The fourth column
represents a scenario with an artificially added asymmetric
packet loss of 15% on the downlink. This was also the highest
loss ratio tolerated by the connection check. We observe in
both cases a significant reduction of the downlink throughput
to roughly 10Mbps. The video resolution is reduced by Stadia
to 720p to facilitate this reduction in throughput.

C. Conclusion for the Markov Model

The cloud gaming system can therefore be modeled as a
loss system. If the available network capacity of a user is

TABLE I: Measurement Results Summary on Google Stadia.

Scenario No Imp. 4K No Imp. 75ms RTT 15% Loss

Codec VP9 H.264 H.264 H.264
Resolution 3840x2160 1920x1080 1280x720 1280x720
Ctrl. Up 0.85 kbps 0.85 kbps 0.85 kbps 1.14 kbps
Ctrl. Down 0.94 kbps 0.94 kbps 0.94 kbps 0.94 kbps
Stream 43.05Mbps 28.6Mbps 10.23Mbps 11.36Mbps

less than 10Mbps, the user is blocked and not allowed to
enter the cloud gaming server. Assuming a bottleneck access
link with capacity C, then the users share the capacity and
are assigned the corresponding video bitrates (i.e. reward).
The corresponding system model is an M/M/n loss system
as discussed in Section IV-B.

IV. MODELING FRAMEWORK FOR USER-CENTRIC
REWARDS OF CLOUD GAMING

A. Notation and Definitions

We consider a system with shared or limited resources. The
system state is reflected by the number i of users in the system,
which determines the system behavior. With a finite system
capacity, arriving users will be rejected when the capacity is
reached and the system blocks the user. The probability that
the system is in state i at time t is x(i, t). In the steady state,
it is x(i) = limt→∞ x(i, t).

The system is described as a Markov model with transition
rates qij from state i to state j. The transition rate for leaving
state i is qi =

∑
i̸=j qij . The rates are summarized in the rate

matrix Q with qii = −qi. This allows a compact representation
of the system transition behavior.

To each state we assign reward rates, ri, which is the
individual reward of a user in state i. In our analysis, we
consider the video bitrate an individual user is assigned to
when the system is in state i. The definition of the rewards
allows to take into account a user-centric perspective. In the
case of cloud gaming, the video bitrate drives the QoE of a
user. The reward rates are summarized in the reward vector
R =

(
r0, r1, . . .

)
.

The expected user-centric reward of a customer arriving in
state i and staying in the system for time t is denoted as Rt|i.
For the cloud gaming use case, the users stay in the system for
time B, which is a random variable. Then, we define Ri as the
expected user-centric reward of a customer arriving in state i
and staying in the system for time B. Finally, the expected
user-centric reward of an arbitrary customer is R.

Additionally, we quantify the expected system-centric re-
ward S by considering the steady state probabilities of the
system and the reward rate per state. Note that S is not taking
into account which states an individual user is passing.

B. Modeling Cloud Gaming System as M/M/n Loss System

First, the system model of the cloud gaming system is
described as M/M/n loss system. Then, the reward model is
provided for two different video bitrate assignment strategies
(FULL, SAME).
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Fig. 3: Assignment of video streaming bitrates depending on
the number of users in the system.

1) System Model: Users are arriving according to a Poisson
process with rate λ. The mean time of customers in the
system is E[B ] = 1/µ and the service times are exponen-
tially distributed with parameter µ. Then, the offered load
is a = λ · E[B ] = λ/µ. Hence, the state transitions are
qi,i+1 = λ and qi,i−1 = iµ, as depicted in Figure 4.

The steady state probabilities x(i) are computed according
to the well known Erlang formula for loss systems.

x(i) =
ai

i!∑n
k=0

ak

k!

i = 0, 1, . . . , n (1)

The blocking probability is the Erlang-B formula

pB = x(n) =
an

n!∑n
k=0

ak

k!

(2)

and follows from the PASTA property (“Poisson Arrival Sees
Time Average” [21], [22]) and the underlying Poisson arrival
process. The steady state probability xA(i) of the system
as seen by an arriving user is identical to the steady state
probability x(i) at an arbitrary, random point in time.

2) Reward Model: In state i, there are i users in the
system sharing the capacity C of the bottleneck link. For
our numerical results, we consider C = 1Gbps. Up to 22
users can be served with maximum bitrate of 45Mbps for
C = 1Gbps. At most 100 users can join the system with
minimum bitrate of 10Mbps. Figure 3 illustrates the assigned
video streaming bitrate per user depending on the number i of
users in the system. We distinguish two different strategies:

• SAME: Every user is assigned the same bitrate in the
system. If there are e.g. 23 users in the system, then all
users get 30Mbps and only 690Mbps are utilized.

• FULL: This strategy assigns some of the users higher
bitrates to fully utilize the bottleneck’s capacity. We
model this strategy as processor-sharing and every user
gets then a fraction of time the higher bitrate.
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Fig. 4: State transition diagram of an M/M/n-0 loss system
with reward rates ri in state i.

C. Problem Formulation

The problem we are solving is the derivation of the expected
user-centric reward R of the M/M/n loss system. The user-
centric reward quantifies for an arbitrary user entering the
system the time-average of the accumulated reward over time.
The user enters the system at time t0 and finds there k other
users. Thus, immediately after the arrival of the tagged user,
the system is in state Γ(t0) = k+1. In that state, the user gets a
reward rΓ(t0). The user leaves the system at time tm. However,
the system state changes over time at t1, t2, . . . , tm−1 and
accordingly the reward for that user. The reward of the tagged
customer is the time-average of the accumulated reward over
time.

r∗ =
1

tm − t0

m−1∑
j=0

(tj+1 − tj) · rΓ(tj) (3)

The system state Γ(tj) at time tj is immediately after the
event (arrival or departure) and the accumulated reward in
that state is (tj+1 − tj) · rΓ(tj). The research question we are
answering is then: What is the expected user-centric reward
R of the M/M/n loss system for an arbitrary user?

D. Non-stationary Analysis of Markov Model

For Markov state processes, the Kolmogorov forward equa-
tion for transition probabilities P(t) during the time interval
t is provided in matrix notation [23].

dP(t)

dt
= P(t) · Q (4)

The solution of this system of differential equations requires
the computation of the matrix exponential of the matrix tQ
for which efficient implementations exist [24], [25].

P(t) = etQ =

∞∑
k=0

(tQk)

k!
(5)

This allows to compute the state probabilities at any time t
for given initial state X (0).

X (t) = X (0) · P(t) = X (0) · etQ (6)

The steady state probabilities are obtained for t → ∞

X =
(
x(0), x(1), . . . , x(n)

)
= lim

t→∞
X (t) (7)

by solving

X ·Q = 0 with
n∑

i=0

x(i) = 1 . (8)



Due to the PASTA property an arriving customer sees the
state as a random observer and we obtain the same probabil-
ities xA(i) = x(i). Hence, we do not need to distinguish the
state probabilities as seen by an arriving customer and simply
use x(i) for the probability that the system is in state i. The
corresponding steady state probabilities are summarized in the
vector X =

(
x(0), x(1), . . . , x(n)

)
.

V. SYSTEM-CENTRIC REWARD

The expected (instantaneous) system-centric reward S0 (or
system-centric reward in short) is defined as

S0 =

n∑
i=0

ri · x(i) (9)

based on the reward rate ri of the system in state i and the
steady state probability x(i) to be in state i.

The definition of the system-centric reward S0 evaluates
the reward the system gives to its users. In particular, S0 also
considers the idle system and assigns the reward rate per user
in idle state, r0. In our results, we use r0 = 0 for the idle
system to reflect that the system is idle and not serving any
customers. Hence, S0 mixes the reward of an arbitrary user
and the utilization of the system, i.e. not being idle.

We may also define the accumulated system-centric reward
to quantify the reward of all users from a system-centric
perspective. This leads to the following notion taking into
account the number of users per state and their reward.

SΣ =

n∑
i=0

i · ri · x(i) (10)

However, we are more interested to quantify the expected
reward of an arbitrary user in the system. To this end, the
expected system-centric reward from the perspective of an
arriving user is defined. We consider the evolution over time
for an arriving user. The arriving user occupies one of the
n places in the system. The remaining n∗ = n−1 places
may be occupied by other users. From the perspective of
the arriving users (tagged user), the system behaves like an
M/M/n∗ = M/M/(n-1) loss system during the service time of
the tagged user. Then, in state i of the M/M/n∗ system, there
are in total (i+1) users in the system including the tagged user
leading to the reward ri+1 in state i of the M/M/n∗ system.
The steady state probabilities are denoted as x∗(i) and follow
from the Erlang formula in Eq.(1) for n− 1 available servers,
i.e. accepted other customers with a = λ/µ.

x∗(i) =
ai

i!∑n−1
k=0

ak

k!

i = 0, 1, . . . , n− 1 (11)

Together with the reward r∗i of the M/M/n∗ loss system,

r∗i = ri+1 i = 0, 1, . . . , n− 1, (12)

we finally arrive at the expected system-centric reward of an
individual (tagged) user
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Fig. 5: System-centric reward for the M/M/100 loss system
and varying offered load a.

S1 =

n−1∑
i=0

r∗i · x∗(i) . (13)

Thereby, we observe the following relationship between
the system-centric reward of an individual user S1 and the
accumulated system-centric reward SΣ.

S1 =
SΣ

E[X ]
(14)

The mean number of users in the system is

E[X ] =

n∑
i=0

i · x(i) . (15)

Then, we can algebraically transform the ratio SΣ

E[X ] using

x(i) = ai/i!∑n
k=0 ak/k!

and obtain the relationship.

SΣ

E[X ]
=

∑n
i=0 i · ri · x(i)∑n
k=0 k · x(k)

=

∑n
i=0 i · ri ·

ai

i!∑n
k=0 k · ak

k!

(16a)

=
a
∑n−1

j=0 rj+1 · aj

j!

a
∑n−1

k=0
ak

k!

=

n−1∑
j=0

rj+1 ·
aj

j!∑n−1
k=0

ak

k!

(16b)

=

n−1∑
j=0

rj+1 · x∗(j) =

n−1∑
j=0

r∗j · x∗(j) = S1 (16c)

Figure 5 illustrates the system-centric reward for an
M/M/100 loss system with varying load. The reward rates are
defined as in Figure 3 based on the video streaming bitrates
assigned to users. We see that for high loads, there is no
significant difference between S0 and S1. However, for small
loads, an arriving accepted user will get the maximum video
bitrate of 45Mbps as indicated by S1. However, the system-
centric reward S0 will consider the idle system and reward it
with r0 = 0Mbps. The figure also shows that, as expected, the
full utilization of the system capacity C (FULL) yields a higher
expected rewards than the SAME video bitrate assignment.



VI. USER-CENTRIC REWARD

A. Reward of User Arriving in State i

The expected (instantaneous) reward of a user arriving in
state i and staying in the system for time t is denoted as
Rt|i. Thereby, the system behaves like an M/M/n∗ loss system
from the perspective of the arriving user with n∗ = n−1.
Hence, the M/M/n system without the arriving (tagged) user is
considered. The steady state probabilities of the M/M/n∗ loss
system are x∗(i) (Eq.(11)) and the reward of the tagged user
is r∗i (Eq.(12)).

We define the conditional state probability vector that in the
steady state an arriving customer finds the system in state i=
0,1,...,n−1 with the vector Ii. This vector has 1 in position
i and 0 otherwise. For i = 0, 1, . . . , n− 1, it is

Ii =
(
Ii(0), · · · , Ii(j), · · · Ii(n− 1)

)
(17)

where Ii(j) = 1 when j = i, and 0 otherwise.
In the steady state, the user arriving in state i at time t0

stays in the system for time t. Analogously to Eq.(6), the
corresponding state probabilities are summarized in the vector

X ∗
t|i = Ii · P∗(t) = Ii · etQ

∗
i = 0, 1, . . . , n− 1. (18)

with Q∗ and P∗(t) being the rate matrix and the state
transition probability matrix in the interval (t0, t0 + t) of the
M/M/n∗ loss system, respectively.

Then, the expected user-centric reward is the (time-
averaged) accumulated reward over the interval of length t

Rt|i =
1

t

∫ t

τ=0

R∗X ∗
τ |i dτ =

1

t

∫ t

τ=0

n−1∑
k=0

r∗kx
∗
τ |i(k) dτ (19)

with the conditional probability x∗
τ |i(k) that a user arriving at

time t0 in the M/M/n∗ system in state i will be in the state k
after time τ . Note that i and k may take values 0, 1, . . . , n−1.
The scalar product R∗ · X ∗

τ |i =
∑n−1

k=0 r
∗
k · x∗

τ |i(k) reflects the
instantaneous reward for that user at time τ with reward vector

R∗ =
(
r∗0 , r

∗
1 , . . . , r

∗
n−1

)
=

(
r1, r2, . . . , rn

)
. (20)

A user stays in the system for a randomly distributed time
B with probability density function b(t). Then, the expected
user-centric reward for a user arriving in state i is

Ri =

∫ ∞

t=0

Rt|i · b(t) dt

=

∫ ∞

t=0

1

t

∫ t

τ=0

n−1∑
k=0

r∗k · x∗
τ |i(k) dτ · b(t) dt

(21)

B. Expected User-Centric Reward

Finally, an arriving user that is not blocked finds the system
in state i = 0, 1, . . . , n − 1 with probability x∗(i) of the
M/M/n∗ system without the tagged customer due to the PASTA
property.
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Fig. 6: Expected reward Ri of a user arriving in state i for
M/M/100 and reward rates corresponding to FULL strategy.

R =

n−1∑
i=0

x∗(i) ·Ri (22)

The expected user-centric reward R is then identical to S1,
the expected system-centric reward of an individual user.

R = S1 =
SΣ

E[X ]
(23)

The formal proof of Eq.(23) is as follows.

R =

n−1∑
i=0

x∗(i) ·Ri (24a)

=

n−1∑
i=0

x∗(i)

∫ ∞

t=0

1

t

∫ t

τ=0

n−1∑
k=0

r∗kx
∗
τ |i(k) dτ · b(t) dt (24b)

=

∫ ∞

t=0

1

t
b(t)

∫ t

τ=0

n−1∑
k=0

rk+1

n−1∑
i=0

x∗(i)x∗
τ |i(k)︸ ︷︷ ︸

=x∗
τ (k)=x∗(k)

dτ dt

(24c)

=

n−1∑
k=0

rk+1 · x∗(k)

∫ ∞

t=0

1

t
b(t)

∫ t

τ=0

1 dτ︸ ︷︷ ︸
t

dt (24d)

=

n−1∑
k=0

rk+1 · x∗(k)

∫ ∞

t=0

b(t) dt︸ ︷︷ ︸
1

= S1 (24e)

Please note x∗
τ (k) = x∗(k) in Eq.(24c), since x∗

τ (k) reflects
the probability that the M/M/n∗ system is in the steady state
at time t and at time t + τ in the state k. However, we are
already in the steady state, and the system state probabilities
are not changing anymore.

For the M/M/n loss system, we finally arrive at

R =

n−1∑
i=0

ri+1 ·
ai

i!∑n−1
k=0

ak

k!

= S1 (25)
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Fig. 7: User-centric reward depending on the offered load and
the number n of users who is allowed to access the cloud
gaming server at the same time.

with an offered load a = λ/µ and the well known Erlang
formula in Eq.(1) for the steady state distribution x∗(i) of the
M/M/n∗ loss system.

VII. NUMERICAL RESULTS

A. Scenario Description and Reward Rates

An access link with a bottleneck capacity of C = 1Gbps
is considered. The video bitrates of the cloud gaming service
are 10Mbps, 30Mbps and 45Mbps. Users with an access
capacity below 10Mbps are not allowed to enter the game
server. Hence, at most 100 users may access the server at the
same time resulting in an M/M/100 loss system. We assume
an average play time of one hour and 22min according to
[26]. The reward rates are defined as in Section IV-B2 and
illustrated in Figure 3 for the FULL and SAME video bitrate
assignment strategies.

In the following, we investigate the expected user-centric
reward R. We will also adjust the number n of allowed
users at the cloud gaming server, which corresponds to the
number of servers in the M/M/n loss system. The idea behind
this is that a smaller number n will increase the video
bitrates per user and the user-centric reward. However, this
will also increase the blocking probability pB . This trade-
off is quantified in Section VII-B and operational points are
identified with Kleinrock’s power metric in Section VII-C.

B. Quantifying User-centric Reward and Blocking Probability

Figure 7 visualizes the user-centric reward depending on
the offered load for various values of n. First, the higher
the load, the smaller the expected reward per user. Then, a
smaller parameter n increases the reward, since the capacity
C is shared among less users. In the extreme case n = 20, all
users will get the maximum video bitrate of 45Mbps.

However, a reduced number n of allowed users will increase
the blocking probability pB . Figure 8 illustrates the trade-
off between user-centric reward and the success probability
(1− pB). The color of the curve indicates the offered load
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Fig. 8: Pareto front of the user-centric reward R vs. the success
probability (1− pB). The marker size indicates the number n
of allowed users; the color represents the offered load a.

a, the lighter the color, the higher the load. The size of the
markers indicates the number n of allowed users at the gaming
server. The cross visualizes the optimal value R = 45Mbps
and pB = 0.

C. Operational Point: Tradeoff Between Blocking and QoE

For the identification of the operational point for the number
n of allowed users, we follow an approach by Kleinrock [27]
who suggests the Power metric to identify the knee of the
curve. The power metric is the ratio of ‘goodness’ divided
by ‘badness’. Then, the optimization of power leads to a
trade-off between maximizing ‘goodness’ while minimizing
‘badness’. The maximum value of the power metric is then
the operational point. In our case, the user-centric reward R is
the goodness and the blocking probability pB is the badness.
Then, the power metric is f(n) = R/pB of the M/M/n loss
system. The operational point is then the number n∗ for which
f(n) is maximal: n∗ = argmax (f(n) : n ∈ {1, 2, . . . , 100}).

The result of Kleinrock’s approach suggestes that the op-
erational point is n∗ = 100 if the offered load is below
a < 117 for both strategies (FULL,SAME). Hence, blocking
probabilities are minimized in that situation. However, for
higher load a > 117, only n∗ = 22 users are accepted,
i.e., they all get the maximum video bitrate, but the blocking
probability is huge.

VIII. CONCLUSIONS AND DISCUSSIONS

The key contribution of the paper is the development of a
Markov reward model for the use case of cloud gaming which
evaluates the video bitrate per user as key QoE influence factor.
Experiments on Google Stadia as an example platform for
cloud gaming revealed that a minimum network bandwidth
of 10Mbps is required to get access at the gaming server.
In a check up phase before entering the game server, the
gaming platform tests the available network bandwidth and
only provides access if sufficient network capacity is available.
Depending on the available network capacity, the video bitrate



of the game rendered at a cloud server and then streamed
to the end user’s device is adapated. Our measurements
indicated different resolutions leading to video bitrates of
10Mbps, 30Mbps and 45Mbps. Those video bitrates are then
considered in our cloud gaming model and are a crucial QoE
influence factor. We assume a bottleneck access link of 1Gbps
which is equally shared by the users in the system. Then,
we can describe the system as an M/M/n loss system with
the parameter n indicating the maximum number of allowed
servers across that bottleneck link.

For the analysis of the system, we define different system-
centric and user-centric rewards. The latter aims at analyzing
the QoE of an individual user of the cloud gaming scenario
and is another key contribution of this work. In particular, we
analyze then the relationships between the system-centric and
user-centric rewards. The system-centric reward quantifies the
reward from the perspective of the entire system. However, we
show that the accumulated system-centric reward normalized
by the mean number of users in the system is identical to the
user-centric reward of an individual user. This is a strong result
and leads to a much simpler computation of the user-centric
reward for the M/M/n loss system. In the end, the computation
requires only the well-known steady state probabilities of the
M/M/n loss system and the reward function.

Finally, we provide some numerical results to quantify the
trade-off between blocking probability and the expected user-
centric reward. Using Kleinrock’s power metric, we identify
operational points of the system and how many users should
be accepted by the system under different load conditions and
video bitrate assignment strategies.

To the best of our knowledge, our works are the first that
define user-centric rewards to apply Markov reward models for
the analysis of QoE or QoE indicators. In particular, this is the
very first Markov reward model for online cloud gaming from
the user’s perspective. The modeling framework of this paper
can be also applied to the QoE analysis of other multimedia
and Internet services. In future work, we will analyze the user-
centric rewards for arbitrary continuous-time Markov chains,
e.g. with state-dependent arrival rates without PASTA property,
and their relation to system-centric rewards. Available QoE
models for video streaming will be utilized to quantify QoE
for such services based on the definition of the user-centric
rewards and proper Markov reward models.
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