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M3S, ITEE, University of Oulu

Oulu, Finland
jesse.nyyssola@oulu.fi

Mika Mäntylä
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Abstract—Software Log anomaly event detection with masked
event prediction has various technical approaches with countless
configurations and parameters. Our objective is to provide a
baseline of settings for similar studies in the future. The models
we use are the N-Gram model, which is a classic approach in
the field of natural language processing (NLP), and two deep
learning (DL) models long short-term memory (LSTM) and
convolutional neural network (CNN). For datasets we used four
datasets Profilence, BlueGene/L (BGL), Hadoop Distributed File
System (HDFS) and Hadoop. Other settings are the size of the
sliding window which determines how many surrounding events
we are using to predict a given event, mask position (the position
within the window we are predicting), the usage of only unique
sequences, and the portion of data that is used for training. The
results show clear indications of settings that can be generalized
across datasets. The performance of the DL models does not
deteriorate as the window size increases while the N-Gram model
shows worse performance with large window sizes on the BGL
and Profilence datasets. Despite the popularity of Next Event
Prediction, the results show that in this context it is better not
to predict events at the edges of the subsequence, i.e., first or
last event, with the best result coming from predicting the fourth
event when the window size is five. Regarding the amount of data
used for training, the results show differences across datasets and
models. For example, the N-Gram model appears to be more
sensitive toward the lack of data than the DL models. Overall,
for similar experimental setups we suggest the following general
baseline: Window size 10, mask position second to last, do not
filter out non-unique sequences, and use a half of the total data
for training.

Index Terms—software execution logs, anomaly detection,
software testing, deep-learning, LSTM, CNN, N-gram, failure
localization, Masked Event Prediction, software debugging

I. INTRODUCTION

Software system logs are considered as one of the primary
sources for determining the cause of failure [1]. Log event pre-
diction is one of the strategies of anomaly detection providing
means for root cause detection as well as failure identification,
tolerance, and recovery [1]. There is existing work that has
focused on event prediction for anomaly detection e.g., [2]–
[4]. Pinpointing anomalous events can help test and application
engineers to identify and fix subtle bugs that result in crashes
after a long time [2].

Existing work shows that event prediction can provide
scores for log events of a software log under investigation [2].
These scores represent event suspiciousness or anomalousness
and may help software engineers that are going through a

log file that can be tens of thousands of lines long. Data for
event prediction comes from historical logs that are free from
anomalies. Such logs can be collected from durations when
operations are known to be normal or from test runs that
have ended without failures. As in prior work, we reason that
incorrectness or low scores in event predictions in anomalous
sequences are good candidates for true anomalous events. This
paper extends prior work [2] by investigating more models,
datasets, and settings. For example, this study introduces CNN
as another DL model next to LSTM as it has proven to be an
effective alternative for anomaly detection [5], [6].

As there are many configurations for the task, the key
contribution of this paper is to provide a baseline for similar
experimental setups for the future. This paper will proceed
to introduce related work in Section II. Followed by that is
research methods in Section III that explains the experimental
environment, setup and practices. The results chapter (Section
IV) will showcase the findings along with discussion on their
relevance. After that suggested baseline is presented in Section
IV-E and the paper concluded in Section VI.

II. RELATED WORK

A recent systematic literature review [1] analyses the qual-
itative and performance metrics of datasets, technical ap-
proaches and automated tools with an emphasis on failure
detection and prediction. The review presents results from
several studies that have utilized the same DL models and
same public datasets used in this study. However, NLP is
only discussed in the context of preprocessing and providing
vectors for DL models. For example, Wang et al. [7] have
demonstrated the effect of NLP based feature extraction in
combination with LSTM.

Mäntylä et al. [2] utilized LSTM and N-Gram models to
pinpoint anomalous events in log files. The study focused
on the company Profilence that provides test automation and
telemetry solutions. Their log files result from long-term
stability tests, which generate very large amounts of log data.
The results showed that using a light-weight approach (N-
Grams) works as almost as well as more complex approaches
such as deep learning, at a fraction of the computational cost.

Bogatinovski et al. [3], utilized masked event prediction
and LSTM to introduce self-supervised method for detecting



anomalies in distributed traces. The results show high perfor-
mance on experimental testbed data. However, the study only
considered a handful of configurations on a single dataset.
Our study aims to examine the impact of individual settings
on multiple datasets.

Outside of anomaly detection, the success of neural lan-
guage models has been proven over statistical models for
masked word prediction [8]. For natural language, mas-
sive data sets exist that make it possible to train massive
transformer-based models. Whereas for software logs one is
often able to utilize only previous logs from the same system.

Kim [9] demonstrated the usage of CNN for natural lan-
guage, building a CNN on top of the publicly available
word2vec vectors, and showing good results with a single
convolution layer. Lu et al. [5] used a similar method to
compare CNN and LSTM models on the HDFS dataset for
anomaly detection. Their results show that CNN can reach a
higher and faster detection accuracy than LSTM. Chen et al.
[6] provide a comprehensive analysis on deep and machine
learning techniques that includes LSTM and CNN. They use
HDFS and BGL as datasets for the study, and their results also
show that CNN is generally better than LSTM. However, on
the HDFS dataset LSTM reaches higher precision than CNN
[6]. These studies show the efficacy of both LSTM and CNN
for anomaly detection but do not consider the masked event
prediction approach.

III. RESEARCH METHODS

This chapter outlines the research methods of the study.
Further details on the implementation can be found via the
replication package1.

A. Experiment configurations

As this study aims to set the baseline for studying anomaly
event detection, we investigate event prediction accuracy
across various settings see Table I. We used four different
datasets. The Profilence dataset [2] corresponds to log traces
of about 280 runs of a test case related to an Android
camera app (totaling ∼780MB of text), among which there
are some failures. The HDFS dataset [10] consists of log
files from a distributed system including over half a million
labelled sequences. The BGL [11] dataset was produced by
a BlueGene/L supercomputer resulting to over 4.7 million
messages. The log contains alert category tags to indicate
alert and non-alert messages [12]. The Hadoop dataset is
based on two applications running on an underlying Hadoop
platform generating logs [13]. It is the smallest dataset in this
study with under 50MB of data. As these datasets differ in
fundamental ways, they can show if some of the other settings
only influence specific kind of data.

We use three models in the study: CNN, LSTM and N-
Gram. CNN and LSTM are deep learning models while the
N-Gram model is based purely on probabilistic assessment
of n-grams. All the other settings will be run on these three

1https://github.com/M3SOulu/MaskedEventAnomalyDetection

models and four datasets, which means there will be 12 results
for each of the other settings.

TABLE I: Settings for experiments

Setting name Default Studied configuration options

Data All Profilence, HDFS, BGL, Hadoop
Model All CNN, LSTM, N-Gram,
Sliding window 5 2, 5, 10, 15, 20
Mask position 0 0, 1, 2, 3, 4
Data selection Total data Total data, Unique data
Split for train data 0.5 0.1, 0.25, 0.5, 0.75, 0.9

The length of the sliding window determines how many
surrounding events there are for a single prediction. The
mask position setting then determines at which position of
the sliding window the predicted event is. We note the mask
position as the distance from the last event. For example, with
window size 5 and mask position 0, the subsequence would
look like E1 E2 E3 E4 X where X represents the event to be
predicted.

The settings data selection and split are both connected to
training of the models. Split determines the portion of the
whole dataset that goes to training while the rest is assigned
as test data for inference. Using data selection, we can further
reduce the training data into just unique sequences. Table II
shows the number of sequences with an example of 50 percent
split between training and test sets.

TABLE II: Number of sequences with 50 percent split

Profilence HDFS BGL Hadoop

Total normal sequences 100 558,223 866,675 169
Total training sequences 50 279,111 433,337 84
Unique training sequences 50 9,651 8,227 71

This study extends on the work of Mäntylä et al. [2] and will
use the same default settings of window size 5, mask position
0, data selection total data and a 50-50 split. After gathering
the initial results from each of the individual variables, we
will combine them and see the results of the variables to be
suggested as a baseline.

B. Computing Environment and DL model Configuration

All of the tests were run on a single computing environment
provided by our anonymous HPC Cloud provider. Our virtual
machine has Intel Core Processor (Broadwell, IBRS) with 28
cores at 2,4 Ghz. It has 224GB memory and two NVIDIA
Tesla P100 PCIe 16GB graphical processing units.

Since we had over 200 experimental setups, we needed to
have a limit on the training time of each of the DL models.
We determined a dataset and model-specific epoch number
that was based on a time budget. We trained each of the
datasets with default settings on both of the DL models for five
minutes which determined the number of epochs we used in
other experiments, see Table III. Given our high-end GPU we



think this time is sufficient to find results for our configuration
space.

TABLE III: Number of epochs per model and dataset

Profilence HDFS BGL Hadoop

CNN 5 10 62 1,449
LSTM 5 8 50 1,145

As this study focuses on setting a generalised baseline for
similar experimental setups, we did not go into dataset specific
hyperparameter optimization although we recognize its value
has been proven in NLP context as well [14]. Both of the
DL models were implemented with Keras interface on top of
TensorFlow libraries. The LSTM model uses embedding layer,
two LSTM layers with 100 memory units, and two deep layers.
The CNN model is otherwise the same, but rather than the
LSTM layers, it uses a one-dimensional convolution layer and
a global max pooling layer.

C. Pre-processing

All of the datasets consist of raw log lines that were parsed
using the state-of-the art parser Drain [15] that has proven to
be effective on various datasets [16]. As in work by Mäntylä et
al. [2], we added start of sequence (SoS) and end of sequence
(EoS) padding based on the sequence length and the position
of the predicted event. This makes it possible to predict the
first event and also the EoS event. In the experiments the data
was split to training and test sets based on portions as shown
in Table I.

IV. RESULTS

The results of all test settings with the exception of data
selection for unique data are summarised in Fig. 1. There are
12 box plots that correspond with a specific model-dataset pair.
The plots illustrate well the similarity of the DL models as the
CNN and LSTM plots are nearly identical while the N-Gram
model falls short on the BGL and Profilence datasets (see
more in Section IV-A). Another finding that becomes apparent
on Fig. 1 is that some datasets are much more sensitive
toward choosing the right settings than others. For example,
the difference between the best and the worst settings (not
including the setting for unique data only) for BGL CNN was

4.9 percent points while for Hadoop CNN it was 31.4 percent
points.

This section continues by showcasing the results of the
four setting variables individually. As there was no significant
difference between LSTM and CNN results for window size,
mask position or training data split, in those sections we refer
to both of them as DL models.

A. Setting: Sliding window

Findings: Fig. 2a illustrates the results of N-Gram model
for each dataset and the effect of varying the length of the
sliding window. The main finding presented in the figure is
the reduction in accuracy with Profilence and BGL datasets
when window size was larger than five.

Fig. 2b shows effects of the window size on the DL models.
While the results of the N-Gram model and the DL models
are very similar up to n=5, after that the DL models can still
keep the accuracy high or even improve it, while it starts to
reduce on the N-Gram model. The DL models also work great
on Hadoop that manages to improve the accuracy all the way
to n=20, while on N-Gram it flattens out at 15.

Discussion: The findings are inline with previous work
[2] that stated that the accuracy of the N-Gram model on
Profilence data starts to reduce when window size is larger than
5 while this doesn’t happen with LSTM model or the HDFS
data at all. Based on this study we can extend the knowledge
by noting that in this respect BGL data behaves exactly the
same as the Profilence data while Hadoop resembles HDFS.
To generalize the results, we recommend using the window
size 10 as a baseline while also keeping in mind the model
based differences.

B. Setting: Mask position

Findings: The effects on mask position are similar across all
models (Fig. 2c and Fig. 2d). Regarding datasets, the findings
indicate that the accuracy of predicting the very first and last
event of the subsequence are the worst. While BGL is mostly
unaffected by the mask position setting, all the other datasets
show major improvement, when predicting the second to last
position as opposed to the last one. The middle position is
conflicting between datasets as Hadoop shows minor increase
in accuracy while Profilence has minor and HDFS major
reduction in accuracy.
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Fig. 1: Box plots summarising the results of configurations for each dataset and model.
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Fig. 2: Charts showcasing the accuracy across various settings for N-Gram and CNN models

Discussion: The results show clearly that the mask positions
1 and 3 give the best performance with the position 1 being
the best due to the large improvement in HDFS. The results
are unable to explain the reduction in accuracy in the middle
position of the subsequence. Future work should consider
combining the longer window size with varying mask position
to see whether the reduction in the middle is apparent with
longer window size as well.

C. Setting: Split for training data

Findings: The effect of the split between training and test
data varies significantly between datasets (Fig. 2e, Fig. 2f).
HDFS and BGL have the most data and highest number
of sequences which leads to consistent accuracy across all
variations of the split proportion. While Profilence also has a
relatively large amount of data, the low number of sequences
leads to variation in the results as the splitting process in-
troduces randomness for each split. As the smallest dataset,
for Hadoop it is crucial to have enough data for training. For
example, with the N-Gram model, increasing the proportion of
training data from 0.1 to 0.5, increases the accuracy from 0.662
to 0.819. Increasing the proportion of training data higher than
0.5 showed a slight improvement for Profilence but a larger
deterioration for Hadoop.

Discussion: Because having enough training data is manda-
tory for having a good model while also not seeing meaningful
improvement using a higher split than 0.5, we suggest an even
split between training and test sets as a baseline. However, we
acknowledge that the split proportion is completely dependent
on the amount of data available so we would recommend
dataset specific split whenever possible. Reducing the training
data can greatly reduce the training time as well while not
having an effect on the accuracy.

D. Setting: Unique training data

Findings: Table IV shows the results of utilizing unique
training data with each dataset and model. Because all of
the Profilence sequences are unique, there was naturally no
difference in the results. For the most part, the same is true
for Hadoop as the there were only 13 duplicate sequences.
When using only unique sequences in training, HDFS and
BGL experience a major drop in the number of available
sequences for training. This causes the accuracy to reduce on
each test. However, for LSTM and N-Gram on BGL we find
a massive drop as the accuracy goes from over 93 percent
accuracy to 25.1 and 22.3 percent respectively.

Discussion: Given that the selection of only unique data for
training can ruin the performance on some datasets and models
(i.e., N-Gram or LSTM on BGL), we would not recommend



TABLE IV: Total vs. unique training data accuracy

BGL Hadoop HDFS Profilence
Total Unique Total Unique Total Unique Total Unique

LSTM 0.938 0.251 0.817 0.817 0.847 0.768 0.856 0.856
CNN 0.938 0.884 0.81 0.812 0.845 0.794 0.856 0.856
N-Gram 0.935 0.223 0.819 0.818 0.848 0.824 0.851 0.851

using it as a baseline. However, since the training time is
proportional to the size of the training data, we acknowledge
that with some datasets training with unique data can lead to
great improvements in computational efficiency.

E. Implications - Suggested baseline

The investigation into individual settings leads to the fol-
lowing variables to be suggested as the baseline: Window
size 10, mask position second to last, do not filter out non-
unique sequences, and use a half of the total data for training.
Compared to the default settings used in this study, the window
size increases and the mask position changes.

TABLE V: Default settings vs. suggested baseline

BGL Hadoop HDFS Profilence
Default Baseline Default Baseline Default Baseline Default Baseline

LSTM 0.938 0.946 0.817 0.953 0.847 0.955 0.856 0.919
CNN 0.938 0.943 0.81 0.953 0.845 0.954 0.856 0.913
N-Gram 0.935 0.918 0.819 0.938 0.848 0.954 0.851 0.833

Finally, to get concrete results of the new baseline, we
ran the models once more. Table V showcases the result of
the suggested baseline compared to the default settings used
in this study. While there are minor reductions in accuracy
with the N-Gram model on BGL and Profilence, there are
improvements across the board elsewhere. For example, using
the baseline settings with the DL models on Hadoop increased
the accuracy by approximately 14 percent points.

V. LIMITATIONS

In this study, there were some limitations caused by the
inherent nature of the DL models. Training the models on
a time budget means that the models were not necessarily
fully trained. This could have impacted the results, but it
also represents some realistic use cases (e.g., in one of our
industrial cases, this is being incorporated into a user-facing
product, and hence time is an important factor). Also, due to
the large number of variations and long training time, we could
not get more samples for results where we knew randomness
would play a role. These are, for example, splitting Profilence
data or choosing unique data from BGL.

Regarding the DL models, we decided not to engage in
model specific hyperparameter optimization as it would have
introduced additional parameters on top of the experimental
settings. Hyperparameter optimization for masked event pre-
diction should be done as part of future work.

VI. CONCLUSION

This study set out to provide a generalized baseline for set-
tings when detecting anomalous events through masked event

prediction on software logs. The settings included window
size, mask position, unique data selection and proportion of
the split for training data. All of the settings were ran on
three different models and four different datasets. Based on our
results, we could suggest a baseline that provided significantly
better results than our initial default values (Table V).
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